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ABSTRACT
Protecting the intellectual property of machine learning models

is a hot topic and many watermarking schemes for deep neural

networks have been proposed in the literature. Unfortunately,

prior work largely neglected the investigation of watermarking

techniques for other types of models, including decision tree

ensembles, which are a state-of-the-art model for classification

tasks on non-perceptual data. In this paper, we present the first

watermarking scheme designed for decision tree ensembles, fo-

cusing in particular on random forest models. We discuss water-

mark creation and verification, presenting a thorough security

analysis with respect to possible attacks. We finally perform an

experimental evaluation of the proposed scheme, showing excel-

lent results in terms of accuracy and security against the most

relevant threats.

1 INTRODUCTION
Machine learning models are pervasively used and are often con-

sidered intellectual property of the parties who have trained them.

This is often a consequence of the incredible number of computa-

tional resources required for model training. For example, even a

relatively small model like GPT-3 is estimated to cost around 5M

dollars for training on the cloud [10]. This motivated a significant

amount of research onmodel watermarking, in particular for deep
neural networks [2, 11, 18]. A watermark is a piece of identifying

informationwhich is embedded into themodel to claim copyright,

without affecting accuracy too much with respect to the origi-

nal model. Different watermarking schemes have been proposed

with different properties, e.g., zero-bit watermarking [1, 9, 12–

14, 16, 19] and multi-bit watermarking [5, 7, 8, 13, 15, 17, 18],

based on the amount of information embedded in the watermark.

Although watermarking received a great deal of attention in

the field of deep neural networks, it was not carefully investigated

for other types of machine learning models for different reasons.

First, some models are shallow in the sense that they are not

over-parameterized and redundant, lacking room to effectively

embed watermarks. Moreover, traditional machine learning mod-

els require less computational resources for training than deep

neural networks. Yet, the process of collecting high-quality train-

ing data, cleaning them and in some cases even manual labeling

them should be performed for any type of supervised learning

algorithm. This process is generally time-consuming and expen-

sive, thus making copyright protection of highly effective models

trained over high-quality datasets an urgent practical need.
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Contributions. In this paper, we contribute as follows:

(1) We present the first watermarking scheme designed for

decision tree ensembles, which are state-of-the-art models

for classification tasks on non-perceptual data.

(2) We discuss watermark creation, verification and security

against a range of possible attacks.

(3) We perform an experimental evaluation of the proposed

scheme on public datasets.

Our analysis shows convincing results in terms of accuracy

and security against the most relevant threats. Watermarking

entails an accuracy loss of two points at most with respect to

the original model, watermark detection is ineffective for two

possible attack strategies, watermark suppression is prevented

by construction, and watermark forgery is either impossible or

can be easily detected in practice.

2 BACKGROUND
Let X ⊆ R𝑑 be a 𝑑-dimensional vector space of real-valued

features. An instance ®𝑥 ∈ X is a 𝑑-dimensional feature vector

⟨𝑥1, 𝑥2, . . . , 𝑥𝑑 ⟩ representing an object in the vector spaceX. Each
instance is assigned a class label 𝑦 ∈ Y by an unknown function

𝑓 : X → Y. Supervised learning algorithms learn a classifier
𝑔 : X → Y from a training set of correctly labeled instances

D𝑡𝑟𝑎𝑖𝑛 = {( ®𝑥𝑖 , 𝑓 ( ®𝑥𝑖 ))}𝑖 , with the goal of approximating the tar-

get function 𝑓 as accurately as possible. The performance of

classifiers is assessed on a test set of correctly labeled instances

D𝑡𝑒𝑠𝑡 = {(®𝑧𝑖 , 𝑓 (®𝑧𝑖 ))}𝑖 , disjoint from the training set, yet drawn

from the same data distribution.

In this paper, we focus on a specific class of supervised learn-

ing algorithms training traditional binary decision trees for either
binary or multiclass classification [4]. Decision trees can be in-

ductively defined as follows: a decision tree 𝑡 is either a leaf 𝐿(𝑦)
for some label 𝑦 ∈ Y or an internal node 𝑁 (𝑓 ≤ 𝑣, 𝑡𝑙 , 𝑡𝑟 ), where
𝑓 ∈ {1, . . . , 𝑑} identifies a feature, 𝑣 ∈ R is a threshold for the

feature, and 𝑡𝑙 , 𝑡𝑟 are decision trees (left and right child). Decision

trees are learned by initially putting all the training set into the

root of the tree and by recursively splitting leaves (initially: the

root) by identifying the threshold therein leading to the best split

of the training data, e.g., the one with the highest information

gain, thus transforming the split leaf into a new internal node.

At test time, the instance ®𝑥 traverses the tree 𝑡 until it reaches

a leaf 𝐿(𝑦), which returns the prediction 𝑦, denoted by 𝑡 ( ®𝑥) = 𝑦.

Specifically, for each traversed tree node 𝑁 (𝑓 ≤ 𝑣, 𝑡𝑙 , 𝑡𝑟 ), ®𝑥 falls

into the left sub-tree 𝑡𝑙 if 𝑥 𝑓 ≤ 𝑣 , and into the right sub-tree 𝑡𝑟
otherwise. To improve their performance, decision trees are often

combined into an ensemble 𝑇 = ⟨𝑡1, . . . , 𝑡𝑚⟩, which aggregates

individual tree predictions, e.g., by performing majority voting.

Figure 1 shows an ensemble including𝑚 = 2 decision trees.
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Figure 1: Example of a decision tree ensemble with two
trees.

3 ENSEMBLE WATERMARKING
We first motivate our key design choices and we introduce the

threat model considered in this work. We then present our wa-

termarking scheme and security analysis.

3.1 Design Choices and Threat Model
We explain the key design choices and the threat model using

the terminology of a recent survey [2]. Our watermark is em-

bedded during the training phase by means of a trigger set, i.e.,
a set of instances evoking unusual prediction behavior in the

watermarked model. The watermark is multi-bit, i.e., it embeds

a binary signature of the model owner into the model behavior,

and provides authentication, i.e., the legitimate model owner may

claim copyright in front of a legal entity. Verification is black-box,
i.e., the legitimate model owner may access the potentially stolen

model solely through queries and has no visibility of the model

parameters.

We assume that the attacker has illegitimate white-box access

to the watermarked model. We also assume that the attacker

does not modify the model in any way, e.g., due to some form

of integrity protection or because they do not want to risk re-

ducing model accuracy at test time. This is admittedly a strong

assumption, but we consider it acceptable for a first investigation

on the topic and it is in line with prior work which observed

that it is extremely difficult to draw a line between adapting an

existing model and creating an entirely different model on its

own [8]. We leave to future work a careful analysis of the model

modifications that the attacker can perform without breaking

the security guarantees of watermarking. Our watermarking

scheme is designed to mitigate the following threats:

(1) Watermark detection: the attacker should be unable to

detect the presence of the watermark. This is important to

limit the attacker’s knowledge, making it easier to catch

them red-handed when they use the model and preventing

room for additional attacks against the watermark.

(2) Watermark suppression: the attacker should be unable to

identify the queries involving the trigger set, otherwise

they might change the model predictions over the trigger

set to make black-box verification fail, thus rendering the

watermark useless in practice.

(3) Watermark forgery: the attacker should be unable to con-

struct a valid watermark, otherwise theymay unduly claim

ownership of the stolen model.

3.2 Watermarking Scheme
Our method is reminiscent of the watermarking scheme pro-

posed for deep neural networks by Guo and Potkonjak [8]. Their

Algorithm 1 Watermark creation algorithm

1: function TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚,H )

2: H ← Adjust(H) ⊲ AdjustH to hide the watermark

3: 𝑊 ← {(®𝑥,𝑦) ↦→ 1 | ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑎𝑖𝑛} ⊲ Sample weights

4: 𝑇 ← TrainRandomForest(D𝑡𝑟𝑎𝑖𝑛,𝑚,H ,𝑊 )
5: while ∃𝑡𝑖 ∈ 𝑇 : ∃(®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 : 𝑡𝑖 ( ®𝑥) ≠ 𝑦 do
6: for ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 do
7: 𝑊 [( ®𝑥,𝑦)] ←𝑊 [( ®𝑥,𝑦)] + 1 ⊲ Increase weights

8: 𝑇 ← TrainRandomForest(D𝑡𝑟𝑎𝑖𝑛,𝑚,H ,𝑊 )
9: return 𝑇

10:

11: functionWatermark(D𝑡𝑟𝑎𝑖𝑛,𝑚, 𝜎, 𝑘)

12: H ← GridSearch(D𝑡𝑟𝑎𝑖𝑛,𝑚) ⊲ Find hyper-parameters

13: D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ← Sample(D𝑡𝑟𝑎𝑖𝑛, 𝑘) ⊲ Random sampling

14: 𝑚′ ← |{1 ≤ 𝑖 ≤ 𝑚 | 𝜎𝑖 = 0}|
15: 𝑇0 ← TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚

′,H)
16: D′

𝑡𝑟𝑖𝑔𝑔𝑒𝑟
← {(®𝑥,−𝑦) | ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 } ⊲ Flip labels

17: D𝑡𝑟𝑎𝑖𝑛 ← (D𝑡𝑟𝑎𝑖𝑛 \ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ) ∪ D′𝑡𝑟𝑖𝑔𝑔𝑒𝑟
18: 𝑇1 ← TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D′𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚−𝑚

′,H)
19: 𝑇 ← {}
20: for 𝑖 ∈ {1, . . . ,𝑚} do
21: if 𝜎𝑖 = 0 then 𝑇 [𝑖] ← GetNextTree(𝑇0)
22: else 𝑇 [𝑖] ← GetNextTree(𝑇1)
23: return ⟨𝑇,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩

scheme generates a binary signature of the model owner and

embeds it into the training data in order to generate the trigger

set. Instances from the trigger set obtain different labels than the

original data points that they were based on, hence the model

exhibits abnormal behavior on them. Watermark verification is

performed by confirming the abnormal behavior of the model

on the trigger set, in their case a significant accuracy drop with

respect to a traditional model trained over the same training data.

In our case, we instead use the signature to encode a specific

model behavior that the trees in the ensembles are required to

show on the trigger set. We focus on random forest models with-

out bootstrap, leaving the generalization to more sophisticated

ensemble methods to future work. In these models, each tree

is a classifier trained on a subset of the features of the entire

training set and the final prediction is computed by aggregat-

ing individual tree predictions, e.g., using majority voting. We

assume that the output of the ensemble is the sequence of the

class predictions performed by each tree. For example, in R the

predict.all field is exactly used for this purpose and a sim-

ilar behavior may be easily encoded in sklearn by creating a

wrapper of the RandomForestClassifier class. For simplicity,

we present the algorithm for binary classification, i.e., the set of

labels Y contains just a positive class +1 and a negative class -1.

We discuss extension to multi-class classification in Section 3.3

Our watermarking scheme is shown in the Watermark func-

tion of Algorithm 1 (lines 11-23). It takes as input a training set

D𝑡𝑟𝑎𝑖𝑛 , the number of trees in the ensemble𝑚, the signature of

the model owner 𝜎 (of length𝑚) and the size of the trigger set

𝑘 ≪ |D𝑡𝑟𝑎𝑖𝑛 |. We denote by𝑚′ the number of bits of 𝜎 set to

0, hence𝑚 −𝑚′ is the number of bits of 𝜎 set to 1. Associated

with 𝜎 , we have a subset of samples of the training set, denoted

by D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , where each tree of the ensemble must either clas-

sify correctly or misclassify based on the setting of the bits of 𝜎 .



Specifically, the 𝑖-th tree in the ensemble is forced to classify cor-

rectly if and only if the 𝑖-th bit of 𝜎 is set to 0. This specific output

pattern is used for watermark verification and, as we argue, it is

difficult to reproduce out of the trigger set, thus mitigating the

risk of watermark forgery. Note that, if𝑚′ > 𝑚/2, then the water-
marked ensemble must correctly classify all D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ’s instances

when the ensemble uses majority voting.

The algorithm first uses grid search to find the best model

hyper-parametersH for an ensemble of𝑚 trees. After sampling

a trigger set D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⊆ D𝑡𝑟𝑎𝑖𝑛 of size 𝑘 , the algorithm trains

two ensembles 𝑇0 and 𝑇1 with hyper-parameters H using the

TrainWithTrigger function (lines 1-9). The function uses sam-

ple weighting to force a specific model behavior on D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 .

Specifically, all the𝑚′ trees of 𝑇0 perform correct predictions for

all samples ofD𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , while all the𝑚−𝑚′ trees of𝑇1 misclassify

by predicting the opposite label. Before training 𝑇0 and 𝑇1, the

function adjustsH to make the two ensembles look structurally

more similar to each other to prevent watermark detection. In

particular, we observe that trees in 𝑇1 may have a stronger ten-

dency to overfit than trees in 𝑇0. The reason is that 𝑇1 operates

abnormally on the trigger set, i.e., we force prediction errors

there, which often pushes trees in𝑇1 to grow larger than trees in

𝑇0. To mitigate this effect, we train a standard tree ensemble with

the hyper-parameters H and we adjust them as follows. First,

we identify the average and standard deviation of the different

hyper-parameters (depth and number of leaves) observed in the

trained model. We then updateH to the difference between the

average and the standard deviation, i.e., we force both depth

and number of leaves to be lower than the average. This simple

heuristic prevents 𝑇1’s trees from growing much more than the

ones in 𝑇0, while still overfitting the expected wrong output on

the trigger set. Moreover, 𝑇0 does not deviate too much with

respect to a standard ensemble trained with the goal of minimiz-

ing prediction errors over the training data. The effect is that

the trees in 𝑇0 and 𝑇1 look similar to each other, while largely

preserving model accuracy.

At the end of the algorithm, the watermarked ensemble 𝑇 is

constructed by picking its 𝑖-th tree from𝑇0 if the 𝑖-th bit of 𝜎 is 0

and from𝑇1 otherwise. The algorithm returns a pair ⟨𝑇,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩
including the watermarked ensemble and the trigger set. As for

watermark verification, assume that Alice has watermarked her

model using our algorithm andwants to sue Bob as an illegitimate

user of the model. Alice gives to the legal authority Charlie her

signature 𝜎 , the trigger set D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and a set of test data D𝑡𝑒𝑠𝑡

such that D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⊆ D𝑡𝑒𝑠𝑡 . Charlie feeds D𝑡𝑒𝑠𝑡 to Bob’s model

and retrieves the predictions associated with D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . Charlie

then verifies that all the instances in D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 are classified cor-

rectly by some 𝑡𝑖 ∈ 𝑇 iff 𝜎𝑖 = 0. The use of D𝑡𝑒𝑠𝑡 is useful to

prevent watermark suppression by disguising D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 among

other instances fed in the verification phase.

3.3 Properties of the Algorithm
Our watermarking scheme is correct, because the TrainWith-

Trigger function enforces the correct behavior of 𝑇0 and 𝑇1, i.e.,

trees in𝑇0 always perform correct predictions onD𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , while

trees in 𝑇1 always perform wrong predictions on D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . In

particular, observe that TrainWithTrigger is called twice: once

at line 15 over D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and once at line 18 over D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

, which

is the label-flipped variant of D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 .

The complexity of the algorithm is dictated by the Train-

WithTrigger function, which at its core just trains a random

forest using the standard algorithm [3] multiple times. Training

a decision tree has complexity 𝑂 (𝑑 · 𝑛2 log(𝑛)), where 𝑑 is the

number of features and 𝑛 is the size of the training set [4], hence

the training of a single forest has complexity𝑂 (𝑚 ·𝑑 ·𝑛2 log(𝑛)).
The maximum number of iterations allowed to enforce the de-

sired property onD𝑡𝑟𝑖𝑔𝑔𝑒𝑟 introduces an additional multiplicative

factor to the complexity of the watermarking scheme.

We conclude our analysis with a few additional remarks. First,

we presented our algorithm for binary classification tasks, be-

cause the existence of a single type of classification error simpli-

fies the presentation. Our watermarking scheme can be easily

extended to multi-class classification, because the signature 𝜎

just tells whether the tree 𝑡𝑖 must classify correctly (𝜎𝑖 = 0) or

not (𝜎𝑖 = 1). When considering more than two classes, the ab-

normal behavior associated to 𝜎𝑖 = 1 can be enforced by means

of an irreflexive mapping 𝜙 : Y → Y determining the type of

misprediction to enforce for each possible class. Line 16 of our al-

gorithm would be changed by substituting −𝑦 with 𝜙 (𝑦). Finally,
we observe that our watermarking algorithm introduces two

additional hyper-parameters (𝜎 and 𝑘) with respect to a classic

random forest algorithm. The choice of these parameters comes

with a trade-off between accuracy and security. From the point

of view of accuracy, picking 𝜎 with a small number of bits set to

1 and a small 𝑘 is better, because this introduces limited changes

with respect to a traditional random forest; while the opposite

is true for security. As with any hyper-parameter, there is no

optimal strategy to set 𝜎 and 𝑘 a priori, but one can investigate

multiple options. Our experiments in Section 4 show that picking

𝜎 with 50% of the bits set to 1 and 𝑘 equal to 2% of the original

training set size empirically provides good results.

3.4 Security Analysis
We here argue about the security of our watermarking scheme

and we present an empirical validation of our claims in Section 4.

Our scheme is robust against watermark detection because the

trees of 𝑇 are trained using hyper-parameters tuned by train-

ing traditional tree ensembles, i.e., the watermarked ensemble

has a similar structure to a standard model. Although hyper-

parameters are adjusted as explained before, the attacker does

not know the optimal value of the hyper-parameters and cannot

infer the adoption of watermarking from the ensemble structure

alone. Most importantly, trees in 𝑇0 and 𝑇1 are trained using ad-

justed hyper-parameters forcing them to look similar in terms

of depth and number of leaves, hence the correct signature 𝜎

cannot be reconstructed by inspecting the structure of the trees

in the ensemble.

Moreover, our scheme is robust against watermark suppres-

sion because D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is a subset of D𝑡𝑟𝑎𝑖𝑛 . This means that

D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is sampled from the same distribution of the training

data, which are themselves assumed to be representative of the

distribution of the test data (otherwise, learning would be ineffec-

tive). In other words, data in the trigger set are indistinguishable

from standard test data and cannot be easily detected by the

attacker during the watermark verification phase, which means

that the attacker cannot maliciously adapt the model output on

D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 to evade verification.

Finally, our scheme is robust against watermark forgery. As-

sume that the attacker does not know the signature 𝜎 and the

trigger set D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , but generates a fake signature 𝜎
′
and tries

to forge a trigger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

where the watermarked model

exhibits the output pattern required by 𝜎′. This is equivalent to
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Figure 2: Conversion of the example formula (𝑥1 ∨ 𝑥2) ∧
(𝑥2 ∨ 𝑥3 ∨ ¬𝑥4) into a tree ensemble.

solving a satisfiability problem for a logical formula encoding the

expected model output. To exemplify, consider the tiny ensemble

with two trees in Figure 1 and let 𝜎′ = 01 be the fake signature.

Forging a positive instance ⟨®𝑥, +1⟩matching the fake signature 𝜎′

is equivalent to finding a satisfying assignment for the following

logical formula:

𝜙 ≜ ((𝑥1 ≤ 5 ∧ 𝑥2 ≤ 3) ∨ (𝑥1 > 5 ∧ 𝑥3 > 7))
∧ ((𝑥1 ≤ 2 ∧ 𝑥2 > 4) ∨ (𝑥1 > 2 ∧ 𝑥3 ≤ 6)) .

A similar reasoning may be applied to forge a negative instance

⟨®𝑥,−1⟩. In this toy example, it is easy to see that ®𝑥 = ⟨𝑥1, 𝑥2, 𝑥3⟩ =
⟨4, 3, 5⟩ is a possible satisfying assignment for 𝜙 . However, as

the size of the ensemble grows larger, such formulas become

increasingly more difficult to solve and might not even admit any

satisfying assignment. Note that formulas like 𝜙 do not define a

system of linear inequalities, because they involve the disjunction

operator and require solving an instance of the Boolean satisfia-
bility problem (SAT), which is NP-hard in general. Indeed, we can

provide a formal NP-hardness proof for the watermark forgery

problem.

Definition 1. The watermark forgery problem is defined as fol-

lows: given a tree ensemble𝑇 , a label𝑦 ∈ {−1, +1} and a signature
𝜎 , find an instance ®𝑥 such that ∀𝑡𝑖 ∈ 𝑇 : 𝑡𝑖 ( ®𝑥) = 𝑦 ⇔ 𝜎𝑖 = 0.

Theorem 1. The watermark forgery problem is NP-hard.

Proof. We show a reduction from 3SAT to watermark forgery,

i.e., we show that if there exists a polynomial time algorithm to

solve the watermark forgery problem, then there exists a poly-

nomial time algorithm to solve 3SAT, which is known to be

NP-complete. This proves that there is no polynomial time al-

gorithm to solve the watermark forgery problem. First of all,

we recap the 3SAT problem. A boolean variable 𝑥 is a vari-

able that can only take value true or false, while a literal 𝑙 is

a boolean variable or its negation. A 3CNF formula 𝜙 is a for-

mula of the form 𝜓1 ∧ . . . ∧ 𝜓𝑘 with 𝑘 ≥ 1, where each 𝜓𝑖 is

a disjunction of three or less literals. More formally, 3CNF for-

mulas 𝜙 are generated by the following context-free grammar:

𝑙 ::= 𝑥 | ¬𝑥 𝜓 ::= 𝑙 | 𝑙 ∨ 𝑙 | 𝑙 ∨ 𝑙 ∨ 𝑙 𝜙 ::= 𝜓 | 𝜙 ∧ 𝜙 .
An example of a 3CNF formula is (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3 ∨ ¬𝑥4).
The 3SAT problem requires, given a 3CNF formula 𝜙 , to find

the values of the boolean variables that make the formula true

(or return a message that no such values exist). The reduction

operates by first constructing an ensemble𝑇 including a decision

tree 𝑡𝑖 of depth three or less for each sub-formula𝜓𝑖 in 𝜙 , using

prediction paths to encode the truth value of the literals therein.

In particular, each internal node of the tree branches over the

value of a variable 𝑥 𝑗 occurring in 𝜓𝑖 with threshold 0, using

the left child to represent the value false and the right child to

represent the value true. We set just one of the children to have

label +1, based on whether setting 𝑥 𝑗 to false or to true is a

sufficient condition for the satisfiability of the sub-formula 𝜓𝑖 .

The conversion from 3CNF formulas to ensembles is intuitive

and exemplified in Figure 2 for the example formula given above.

Generalization to arbitrary 3CNF formulas is conceptually sim-

ple, but technical to define. In particular, we define a conversion

function J·K by induction on the structure of the formulas as

follows:

J𝑙K =

{
𝑁 (𝑥 ≤ 0, 𝐿(−1), 𝐿(+1)) if 𝑙 = 𝑥

𝑁 (𝑥 ≤ 0, 𝐿(+1), 𝐿(−1)) if 𝑙 = ¬𝑥

J𝜓K =


J𝑙K if𝜓 = 𝑙

𝑁 (𝑥 ≤ 0, J𝜓 ′K, 𝐿(+1)) if𝜓 = 𝑥 ∨𝜓 ′

𝑁 (𝑥 ≤ 0, 𝐿(+1), J𝜓 ′K) if𝜓 = ¬𝑥 ∨𝜓 ′

J𝜙K =

{
J𝜓K if 𝜙 = 𝜓

⟨J𝜙1K, J𝜙2K⟩ if 𝜙 = 𝜙1 ∧ 𝜙2 .
By construction, we have that 𝜙 is satisfiable if and only if the

watermark forgery problem has a solution for the ensemble J𝜙K
using label 𝑦 = +1 and signature 𝜎 = ⟨0, . . . 0⟩. Indeed, the leaves
of a tree 𝑡𝑖 with label +1 identify prediction paths encoding suffi-

cient conditions for the satisfiability of the sub-formula𝜓𝑖 , hence

finding a positive instance ®𝑥 such that 𝑡𝑖 ( ®𝑥) = +1 is equivalent
to finding a satisfying assignment for𝜓𝑖 . The bits of 𝜎 are all set

to 0 because 𝜙 is satisfiable if and only if all the sub-formulas𝜓𝑖
are satisfiable, being 𝜙 a conjunction. If a solution ®𝑥 is found for

the watermark forgery problem, we can translate into a value

assignment for 3SAT by having each variable 𝑥 𝑗 set to true if and

only if the 𝑗-th component of the solution is positive. □

4 EXPERIMENTAL EVALUATION
We implemented the proposed watermarking scheme on top of

the sklearn library and we make our code publicly available to

support reproducibility
1
. We here evaluate the accuracy of wa-

termarked models and the security of our watermarking scheme

on public datasets (MNIST2-6
2
, breast-cancer

3
and ijcnn1

4
) nor-

malized in the interval [0, 1]. Table 1 reports the most relevant

dataset statistics, showing that the considered datasets are diverse

in terms of number of instances, number of features and class

distribution. Note that MNIST2-6 includes digits representing

numbers 2 and 6 from the MNIST dataset, while ijcnn1 has been

reduced to 20,000 instances using stratified random sampling

to speed up the experimental evaluation. MNIST is a standard

benchmark that has been used for evaluating watermarking tech-

niques in many papers [5, 12, 13]. Breast-cancer and ijccn1 are

instead two numerical tabular datasets that are representative of

typical tasks where tree ensembles are fruitfully adopted.

4.1 Accuracy Evaluation
Since watermarked models force a specific prediction pattern

over the trigger set, their predictive power on the test data might

1
https://github.com/LorenzoCazzaro/watermarking-decision-tree-ensembles

2
https://www.openml.org/search?type=data&sort=runs&id=554&status=active

3
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#

breast-cancer

4
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1

https://github.com/LorenzoCazzaro/watermarking-decision-tree-ensembles
https://www.openml.org/search?type=data&sort=runs&id=554&status=active
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1


Table 1: Dataset statistics.

Dataset Instances Features Distribution

MNIST2-6 13,866 784 51%/49%
breast-cancer 569 30 37%/63%

ijcnn1 20,000 22 90%/10%
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Figure 3: Accuracy of watermarked models on the test set
when varying the percentage of training instances included
in D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 (top figure) and the percentage of bits set to 1
in the signature 𝜎 (bottom figure).

be penalized. In our first set of experiments, we evaluate the

accuracy loss introduced by our watermarking scheme. Figure 3a

plots how accuracy downgrades for increasing sizes of the trigger

set, given a fixed randomly generated signature including 50% of

the bits set to 1. The figure shows that the accuracy loss is limited

in general and even negligible when the size of the trigger set

does not exceed 2%.

Of course, the number of bits set to 1 in the signature might

also impact the accuracy of the watermarked model, because

such bits denote forced prediction errors. Figure 3b shows how

accuracy changes when we increase the number of bits set to

1 in the signature, given a fixed trigger set (including 2% of the

training data). Again, the accuracy loss is small in practice, with

the largest drop in accuracy amounting to around two points.

4.2 Security Evaluation
We focus on watermark detection and watermark forgery, be-

cause protection against watermark suppression is immediately

achieved by construction. We assume that 𝜎 includes 50% of the

bits set to 1 and D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 includes 2% of the training set.

4.2.1 Watermark Detection. We compare the depth and the

number of leaves of the trees corresponding to bits set to 0 and

to 1 in the signature 𝜎 to understand whether there are relevant

differences leaking information about 𝜎 . This is a significant

threat, because trees associated with a bit set to 1 are forced to

make prediction errors in the trigger set, hence they might grow

larger than the other trees when trying to achieve overfitting.

We simulate two watermark detection strategies by means of

the following experiment: given a hyper-parameter like depth or

number of leaves, the attacker computes its mean and standard

deviation over the ensemble. Intuitively, “small” trees are more

likely to be associated with bit 0 and “large” trees are more likely

to be associated with bit 1. To formalize this intuition, in our first

strategy the attacker associates bit 0 with all trees falling below

the difference of the mean and standard deviation, and bit 1 to all

trees falling above the sum ofmean and standard deviation; all the

other trees around the mean correspond to uncertain cases, where
the attacker might try random guessing. Note that this strategy

may produce a large number of uncertain cases, thus making

random guessing of them infeasible for the attacker. However,

the technique is interesting because we can check whether it

can correctly identify at least the rest of the trees. The second

strategy does not produce uncertain trees, as it uses the mean

as a sharp threshold to determine whether a tree is associated

with bit 0 or 1. Table 2 reports the results, showing that both the

attack strategies are ineffective. The first strategy (in red) yields a

huge number of uncertain cases, but surprisingly it also produces

wrong predictions for the rest of the trees. The second strategy

(in blue) has no uncertainty, but produces many prediction errors

and is unable to reconstruct the signature. Finally, we can observe

that standard deviation values are relatively small compared to

the values of the associated means. Therefore, the trees trained

by our techniques are all similar to each other, thus making it

very difficult for an attacker to identify 𝜎 .

4.2.2 Watermark Forgery. To show security against water-

mark forgery, we simulate a scenario where the attacker gener-

ates a fake signature 𝜎′ and tries to forge a trigger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

where the watermarked model exhibits the output required by 𝜎′.
We showed that this requires solving an NP-hard problem, how-

ever recent advances in automated verification enable dealing

with large inputs even for computationally intensive problems,

hence we complement our theoretical analysis with empirical

evidence. We implement our forgery attempts by generating

10 random signatures and solving a satisfiability problem for a

logical formula encoding the expected model output using Z3,

a state-of-the-art SMT solver [6]. For each fake signature, we

iterate over all the instances in the test set and we look for a

satisfying assignment for our logical formula, while requiring

that the 𝐿∞-distance between the solution and the original test

instance is bounded by some 0 < 𝜀 < 1. The distance constraint

is useful to ensure that the forged trigger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

is reminis-

cent of real test instances. We are in fact assuming that, as usual,

the test set has the same distribution of the training set.

Our experiment shows different results on the different datasets.

In the case of breast-cancer, the forged trigger set reaches at most



Table 2: Number of trees correctly/wrongly associated with their bits, using two watermark detection strategies. For each
dataset, mean and standard deviation of “Depth” and “#leaves” are reported in round brackets.

Dataset Hyper-Parameters #correct #wrong #uncertain

MNIST2-6

Depth (19.82 - 2.69) 31 / 57 11 / 33 48 / 0

#leaves (229.99 - 0.10) 1 / 46 0 / 44 89 / 0

breast-cancer

Depth (7.03 - 0.81) 34 / 46 9 / 24 27 / 0

#leaves (18.90 - 0.45) 4 / 39 0 / 31 66 / 0

ijcnn1

Depth (18.00 - 0.00) 0 / 40 0 / 40 80 / 0

#leaves (498.88 - 5.86) 0 / 37 3 / 43 77 / 0
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Figure 4: Size of the forged trigger setD′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

when varying
the amount of distortion 𝜀 on the MNIST2-6 dataset.

14% of the size of the original trigger set, even when setting a

high 𝜀 = 0.9. This is explained by the fact that Z3 does not find

satisfying assignments for most of the logical formulas, hence

the legitimate model owner is the only one who is able to present

a trigger set of significant size. In the case of ijcnn1, instead, the

forged trigger set is just 1% of the size of the original trigger set

on average for 𝜀 = 0.1. Forging a trigger set of the same size as

the original trigger set for 𝜀 > 0.1 does not scale, already requir-

ing more than four hours for a single bitmask for 𝜀 = 0.3. The

reason is that the ensemble for ijcnn1 contains more than twice

the leaves of the ensembles for the other two datasets, making

the satisfiability problem more difficult. The results are more

interesting for the MNIST2-6 dataset and we visualize them in

Figure 4. The figure shows that, when 𝜀 increases, it becomes eas-

ier to forge trigger sets of comparable size to the original trigger

set. However, the amount of distortion required by the forgery

makes it easy to detect such malicious attempts, because the size

of the forged trigger set become comparable to the original only

when 𝜀 ≥ 0.7. Figure 5 shows three forged images of D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

for increasing values of 𝜀 ∈ {0.3, 0.5, 0.7}. As we can see, the

image with the highest amount of distortion is rather blurry and

quite far from the original image. Indeed, a standard decision

tree ensemble achieves 0.99 accuracy on the original trigger set,

while its accuracy drops to 0.62 on the forged trigger set.

4.3 Performance Evaluation
In our experiments, we enforced a maximum of 500 attempts to

achieve the desired behavior on the trigger set during training.

Given the efficiency of random forest training, our watermarking

scheme remains relatively efficient despite the need for multiple

Figure 5: Instances generated by Z3 for 𝜀 ∈ {0.3, 0.5, 0.7}.

training attempts through sample weighting. On the smallest

dataset, breast-cancer, training a forest of 70 trees (with a max-

imum depth of 8) takes less than one second, both with and

without watermark embedding. However, as the dataset size in-

creases, so do the trigger set size and the computational cost

of the watermarking algorithm. For instance, on the MNIST2-6

dataset, training a forest of 90 trees with a maximum depth of

24 takes 20 seconds. Similarly, training a forest of 80 trees with

a maximum depth of 18 on the ijcnn1 dataset takes 27 seconds.

Although incorporating a watermark adds an overhead, com-

pared to the two seconds required to train a traditional forest

without watermarking on MNIST2-6 and ijcnn1, our training

algorithm demonstrates acceptable performance for practical use,

as watermarked models of reasonable size can be trained in a

matter of seconds.

5 CONCLUSION
Weproposed the first watermarking scheme designed for decision

tree ensembles and we proved the security of our construction.

Our experimental evaluation shows convincing results, because

watermarked models largely preserve their accuracy and are ro-

bust against relevant attacks. As future work, we plan to extend

our security analysis to more powerful attackers, e.g., who are

able to modify the watermarked model and forge trigger sets

using more sophisticated strategies. We would also like to gener-

alize our watermarking scheme to more advanced decision tree

ensembles, such as those trained using gradient boosting.
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