
Timber! Poisoning Decision Trees
Stefano Calzavara

Università Ca’ Foscari Venezia
Venice, Italy

stefano.calzavara@unive.it

Lorenzo Cazzaro
Università Ca’ Foscari Venezia

Venice, Italy
lorenzo.cazzaro@unive.it

Massimo Vettori
Università Ca’ Foscari Venezia

Venice, Italy
884477@stud.unive.it

Abstract—We present Timber, the first white-box poison-
ing attack targeting decision trees. Timber is based on a
greedy attack strategy that leverages sub-tree retraining
to efficiently estimate the damage caused by poisoning
a given training instance. The attack relies on a tree
annotation procedure, which enables the sorting of training
instances so that they are processed in increasing order of
the computational cost of sub-tree retraining. This sorting
yields a variant of Timber that supports an early stopping
criterion, designed to make poisoning attacks more efficient
and feasible on larger datasets. We also discuss an extension
of Timber to traditional random forest models, which
is valuable since decision trees are typically combined
into ensembles to improve their predictive power. Our
experimental evaluation on public datasets demonstrates
that our attacks outperform existing baselines in terms of
effectiveness, efficiency, or both. Moreover, we show that
two representative defenses can mitigate the effect of our
attacks, but fail to effectively thwart them.

Index Terms—adversarial machine learning, decision
trees, poisoning attacks, tree ensembles.

I. INTRODUCTION

Our daily activities are becoming increasingly more
reliant on machine learning, yet the trustworthiness of
machine learning has been questioned from different
points of views. A prominent class of threats against
machine learning is represented by poisoning attacks [1].
Poisoning attacks break the implicit assumption that data
used to train machine learning models are representative
of actual test data that will be seen upon model deploy-
ment. In particular, if the attacker can compromise the
integrity of training data, e.g., by crafting incorrectly
labeled instances, the training algorithm may operate
on low-quality data yielding models with poor accuracy.
The ultimate goal of a poisoning attack is to determine
an effective way to pollute training data so as to force
wrong model predictions at test time.

Poisoning attacks have been extensively investigated
in the research literature. Multiple papers proposed
poisoning attacks against different types of machine
learning models, including support vector machines [2],
[3], [4], [5], linear classifiers [6] and neural networks [7],

[8]. Unfortunately, prior research largely neglected the
investigation of poisoning attacks against decision trees,
which are still one of the most effective machine learning
models operating on tabular data [9]. Decision trees
are peculiar because they are non-differentiable models,
meaning that the loss function that they optimize does
not have a gradient. This implies that poisoning attacks
against decision trees cannot be formalized in terms
of a traditional bilevel optimization problem in the
style of [1] and new custom attack algorithms must be
designed. A possible way around this limitation is using
black-box attack strategies, which are model-agnostic
and proved effective in some practical settings [10],
[11], [12], [13], [14], [15]. Unfortunately, black-box
attack strategies assume that the attacker does not know
anything about the training process, hence they may
underestimate the attacker’s capabilities. In-depth un-
derstanding of poisoning attacks against decision trees
requires the careful design and evaluation of white-box
attack strategies, where the attacker abuses the inner
workings of the tree learning algorithm to their advan-
tage. This way, we may be able to perform a conservative
security analysis which takes into account more powerful
attackers with additional information about their target.

Contributions: Our contributions are as follows:

1) We propose Timber, the first white-box poisoning
attack designed to target decision trees. Timber is
based on a greedy attack strategy that leverages
sub-tree retraining to efficiently estimate the dam-
age caused by poisoning a given training instance.
Timber relies on a tree annotation procedure which
enables sorting training instances so that they are
processed in increasing order of computational
cost of sub-tree retraining. This sorting yields a
variant of Timber that supports an early stopping
criterion designed to make poisoning attacks more
efficient and feasible on larger datasets.

2) We discuss how to generalize Timber from indi-
vidual decision trees to decision tree ensembles, in

particular traditional random forest models based
on independently trained trees [16]. This general-
ization is useful because decision trees are rarely
used in isolation and ensembles of decision trees
are normally used to solve challenging classifica-
tion problems.

3) We experimentally assess the performance of our
attacks on public datasets, showing that they out-
perform existing baselines in terms of effective-
ness, efficiency or both. We also show that two
representative defenses can mitigate the effect of
our attacks, but fail to effectively thwart them.

Code availability: To support reproducible re-
search, we make our code available on GitHub [17].

II. BACKGROUND

We here present the main technical ingredients re-
quired to understand the rest of the paper.

A. Supervised Learning

Let X ⊆ Rd be a d-dimensional vector space of real-
valued features. An instance x⃗ ∈ X is a d-dimensional
feature vector ⟨x1, x2, . . . , xd⟩ representing an object in
the feature space X . Each instance is assigned a class
label y ∈ Y by an unknown target function f : X → Y .
Supervised learning algorithms automatically learn a
classifier g : X → Y from a training set of correctly
labeled instances Dtrain = {(x⃗i, f(x⃗i))}i, with the goal
of approximating the unknown target function f as
accurately as possible.

The performance of classifiers is empirically estimated
on a test set of correctly labeled instances Dtest =
{(z⃗i, f(z⃗i))}i, disjoint from the training set, yet drawn
from the same data distribution. A traditional measure
to assess the performance of classifiers is called accu-
racy, defined as the percentage of instances of the test
set where the classifier performs a correct prediction.
For simplicity, we here focus on binary classification
tasks, i.e., we let Y = {+1,−1}. This is a convenient
setting to study poisoning attacks, because it allows
us to represent poisoning in terms of label flipping
attacks [1], where the attacker replaces a correctly la-
belled instance (x⃗i, f(x⃗i)) ∈ Dtrain with the mislabelled
instance (x⃗i,−f(x⃗i)).

B. Decision Trees

We focus on traditional binary decision trees for
classification [18]. Decision trees can be inductively
defined as follows: a decision tree t is either a leaf λ(y)
for some label y ∈ Y or an internal node σ(f, v, tl, tr),
where f ∈ {1, . . . , d} identifies a feature, v ∈ R is a

x1 ≤ 10

x2 ≤ 5

+1 −1

x2 ≤ 8

+1 −1

Fig. 1: Example of decision tree.

threshold for the feature, and tl, tr are decision trees (left
and right child). At test time, the instance x⃗ traverses
the tree t until it reaches a leaf λ(y), which returns the
prediction y, denoted by t(x⃗) = y. Specifically, for each
traversed tree node σ(f, v, tl, tr), x⃗ falls into the left sub-
tree tl if xf ≤ v, and into the right sub-tree tr otherwise.
Figure 1 represents an example decision tree of depth 2,
which assigns label +1 to the instance ⟨12, 7⟩ and label
−1 to the instance ⟨8, 6⟩.

Decision trees are learned by an iterative process
starting from a single leaf, which is grown into a full-
fledged tree with the goal of minimizing the entropy of
the leaves.1 For any D ⊆ Dtrain, we define its entropy
H(D) as follows:

H(D) = −(|D+1|/|D| · log2(|D+1|/|D|)
+ |D−1|/|D| · log2(|D−1|/|D|)),

where Dy = {(x⃗, y′) ∈ D | y′ = y} is the restriction of
D to the instances with label y.

The training algorithm TREE-TRAIN(D) is presented
in Algorithm 1 and is invoked with input D = Dtrain. The
algorithm splits a leaf including the data D by extracting
a set of candidates splits, noted splits(D), which may be
used to grow the tree by replacing the leaf with a new
decision tree of depth one. The simplest definition of
splits(D) is splits(D) = {(f, v) | ∃(x⃗, y) ∈ D : xf = v},
but implementations may vary and we do not make any
assumption on how the candidate splits are computed.
The training algorithm computes, for each (f, v) ∈
splits(D), how the entropy would change if the leaf
was grown into a tree of the form σ(f, v, λ(yl), λ(yr))
for some yl, yr minimizing the prediction errors in the
leaves. This is done by computing the information gain

1Decision trees can also be trained to minimize other measures, such
as Gini impurity. Our proposal can be readily generalized to other
measures with limited effort.

2

Algorithm 1 Training algorithm for decision trees.

1: function TREE-TRAIN(D)
2: best-split← ⊥
3: best-gain← 0
4: for (f, v) ∈ splits(D) do
5: if G(D, f, v) > best-gain then
6: best-split← (f, v)
7: best-gain← G(D, f, v)
8: if best-split = (f∗, v∗) then
9: tl ← TREE-TRAIN(Df∗≤v∗

)
10: tr ← TREE-TRAIN(Df∗>v∗

)
11: return σ(f∗, v∗, tl, tr)
12: else
13: if |D+1| ≥ |D−1| then return λ(+1)
14: else return λ(−1)

G(D, f, v) resulting from partitioning D by using the
split (f, v), which is defined as follows:

G(D, f, v) = H(D)− (|Df≤v|/|D| ·H(Df≤v)

+ |Df>v|/|D| ·H(Df>v)),

where Df≤v = {(x⃗, y) ∈ D | xf ≤ v} and Df>v =
{(x⃗, y) ∈ D | xf > v}. Once the best split (f∗, v∗) has
been found, the original leaf is replaced by the decision
tree σ(f∗, v∗, tl, tr), where tl and tr are the decision
trees recursively trained over Df∗≤v∗

and Df∗>v∗
re-

spectively. The tree construction terminates when none
of the possible splits enables some information gain or
some other termination criterion is met, e.g., the tree
exceeds a maximum depth (for simplicity, alternative
termination criteria are not shown in the pseudo-code).

The computational complexity of the tree training
algorithm is O(d · n2 log(n)), where d is the number
of features and n is the size of the training set [18],
[19]. This complexity assumes that, for each feature
f , the information gain is computed by ordering the
training data based on the value of f , which simplifies
the computation of the partitioning induced by each
candidate split (f, v). In particular, each of the d features
requires a sorting operation of cost O(n · log(n)) to find
the best split. This must be repeated for each node in the
decision tree, whose number is bounded above by O(n).

C. Tree Ensembles

Decision trees are effective models for small datasets,
but they may offer suboptimal performance on large and
complicated datasets. The predictive power of tree-based
classifiers can be increased by training ensembles of
multiple decision trees, using algorithms like Random

Forest (RF [16]) and Gradient Boosted Decision Trees
(GBDT [20]). RF is based on the training of multi-
ple independent trees, each trained on a subset of the
training set and a subset of the features. The ensemble
prediction is then performed by aggregating individual
tree predictions, e.g., using hard majority voting. GBDT
instead is a more sophisticated approach in which trees
are iteratively trained, with each tree ti being trained
with the goal of reducing the prediction errors made by
the previously trained trees t1, . . . , ti−1.

III. POISONING DECISION TREES

We here introduce our threat model, we explain the
key challenges of our research and we propose Timber,
our poisoning attack operating against decision trees. We
also discuss how Timber can be extended to decision tree
ensembles, in particular based on the RF algorithm.

A. Threat Model

In a poisoning attack, the attacker targets the train-
ing data or the training algorithm to compromise the
performance of the classifier at test time. To define our
threat model for poisoning attacks, we start from a recent
survey systematizing research in the field, which defines
a clear attack framework and introduces terminology [1].

We focus on availability violations, i.e., the attacker’s
goal is to decrease the accuracy of the classifier that is
trained by the learning algorithm: the more the accuracy
is downgraded, the more the attack is considered effec-
tive. Moreover, we focus on white-box attacks, i.e., the
attacker has complete knowledge of the training data,
the training algorithm, and the model hyperparameters.
In this way, we identify insights about decision tree
construction that the attacker might abuse and we es-
timate security under the conservative assumption that
the attacker has full knowledge of the training process.
Finally, we assume that the attacker alters a subset of
the training data collected by the target. The attacker can
only modify the training labels, thus it does not perturb
the features of any training sample, which is often
referred to as a label flipping attack. The attacker can flip
the labels of up to k arbitrarily chosen instances of the
training set, leading to a poisoned dataset which is used
to train the classifier. Label flipping is an appropriate
threat model for scenarios where the labeling process is
adversarial. For instance, in product rating systems, an
attacker may assign low scores to targeted products in
a public catalog to manipulate a recommender system.
Similarly, an attacker may create a rogue mailbox to
mislabel spam messages as ham with the goal of fooling
a remote classifier trained over user reports.

3

The objective of our research is to find an algorithm
to effectively identify the k instances to attack out of the
n training instances, with the goal of compromising the
accuracy of the trained classifier.

B. Baselines and Challenges

We are not aware of any poisoning attack in the
literature that specifically targets decision trees. A few
research papers present experiments targeting decision
trees (among other models) by means of model-agnostic
black-box poisoning techniques, e.g., based on the dis-
tribution of different features of the training data [21].
Similar approaches are useful to empirically assess the
dangers posed by poisoning attacks, but they make the
assumption that the attacker knows nothing about the
training process and do not offer any guarantees about
their practical effectiveness. This motivates the impor-
tance of white-box attacks abusing the inner workings of
the tree learning algorithm to magnify the advantage of
the attacker and enable a conservative security analysis.
There are a few white-box poisoning attacks in the
literature that work for entire classes of machine learning
models, such as differentiable models [3], [5], [6], [7],
[8]. Unfortunately, these attacks do not generalize to de-
cision trees, because decision trees are not differentiable.

We here explain why poisoning decision trees is
challenging by presenting a few baseline attack methods.
The first observation we make is that finding the best k
instances to flip by exhaustive enumeration of the subsets
of instances is impossible, because there are

(
n
k

)
subsets

to test. Even for a small dataset of n = 1,000 instances
and a tiny k = 10, there are around 2.634×1023 available
combinations, which is intractable. A possible solution
is then to use a heuristic greedy approach. We first train
a decision tree t over Dtrain and we then try to flip
each instance of Dtrain before training a new tree t′.
After trying all the instances, we flip the one leading
to the tree with the lowest accuracy and we iterate the
process for k rounds, leading to n · k trees being grown.
This complexity may be acceptable for small datasets,
as shown in the experimental evaluation of label flipping
attacks by Paudice et al. [5]. Unfortunately, for a medium
dataset of n = 5,000 instances and k = 500, the greedy
attack may already construct up to 2.5M trees.

To further speed up the attack, one might revise the
proposed greedy approach to include an early stopping
criterion, e.g., when the attack finds any instance leading
to some accuracy loss, the attack flips its label and moves
to the next round. Of course, this does not change the
worst-case complexity of the algorithm, but in practice
this variant of the attack is expected to be much faster.

x1 ≤ 10

x2 ≤ 5

+1

250

−1

150

400

x2 ≤ 8

+1

350

−1

250

600

Fig. 2: Intuition of the Timber attack. If flipping the label
of the instance (x⃗, y) does not invalidate the best split
of the root and x⃗ falls in its left child, only the sub-tree
in red (including 400 instances) may need retraining.

To estimate the benefits of early stopping, assume that on
average just 10% of the training set must be analyzed to
identify an instance leading to some accuracy loss. For a
dataset of n = 5,000 instances and k = 500, this variant
of the attack may construct around 250k trees.

C. Timber: Attack Overview

Our attack called Timber extends a traditional greedy
attack strategy (possibly with early stopping) to improve
its efficiency and make it usable in practice. Greedy
attack strategies require the construction of a significant
number of decision trees, as discussed in the previous
section. The main intuition of our attack is that, if we can
make decision tree construction itself more efficient, we
can make greedy attack strategies scale to larger datasets.
Recall that training a decision tree has a computational
complexity of O(d · n2 log(n)), because we split O(n)
nodes by paying a cost of O(d · n log(n)) for each
node. A key insight of our attack is that the worst-
case complexity of node splitting O(d ·n log(n)) is very
pessimistic, because the training set is partitioned across
nodes when the tree is grown and becomes increasingly
smaller, e.g., if the best split of the root is (f, v), the
recursive calls of the training algorithm operate over
the smaller datasets Df≤v and Df>v respectively. For
example, if (f, v) evenly splits the training set, the two
recursive calls operate on n/2 instances, meaning that
splitting each of the new nodes costs significantly less
than splitting the root. Hence, nodes deeper in the tree
are much cheaper to split than nodes higher in the tree,
with the root being the most expensive node to split.

Since greedy attack strategies operate by flipping one
instance at a time, the impact of this single instance on
the trained tree is expected to be small in practice. In
particular, flipping the label of a single training instance
is unlikely to affect the best split of the root, because the

4

best split is identified by considering n ≫ 1 instances.
However, the lower we descend in the decision tree, the
higher the odds that the flipped instance affects the best
split. In our example where the root evenly splits the
training instances, the best split of a child of the root
is found by processing just n/2 instances, meaning that
a single label flip has a higher chance of changing the
best split. This means that a single label flip normally
preserves most of the structure of the decision tree and
just a small, deep sub-tree where the best split has been
invalidated needs to be retrained. If the root of this sub-
tree includes just a small part of the training data, sub-
tree retraining enables a significant speedup compared
to retraining the entire tree from scratch. This intuition
is shown in Figure 2, where the numbers in the circles
show how the 1,000 instances of the training set are split
across the nodes upon tree construction. If flipping the
label of the instance ⟨8, 6⟩ does not invalidate the best
split of the root x1 ≤ 10, we may recursively focus on
its left child (the right child can be ignored, because the
poisoned instance falls on the left). Then, if the label flip
invalidates the best split of the left child x2 ≤ 5, we only
need to retrain the sub-tree in red, whose construction
only involves 400 instances (40% of the training set).

Our attack operates by annotating each node of the
decision tree with the set of the training instances which
would not change the current node best split, even if their
label was flipped. We refer to such instances as the stable
instances of the node. By leveraging this information, we
can determine the portion of the decision tree impacted
by a poisoning attack and estimate the attack effective-
ness by retraining a single sub-tree, rather than the entire
tree. To identify the stable instances within decision tree
nodes, we leverage a compact representation of possible
attacker’s actions and their corresponding impact on the
information gain computed during tree learning. The
intuition is discussed for the dataset D in Figure 3, where
the sun represents instances of the positive class, the
moon represents instances of the negative class, and the
dotted line shows the best split (f, v) of a tree node.
The attacker has four possible options: (i) flip a positive
instance on the left of the split, (ii) flip a negative
instance on the left of the split, (iii) flip a positive
instance on the right of the split, or (iv) flip a negative
instance on the right of the split. In all four cases, the
identity of the chosen instance is irrelevant, because the
information gain depends just on the number of positive
and negative instances on each side of the split.

In our example, the initial entropy is 0.99 and the
best split (f, v) has an information gain of 0.16. We then

Fig. 3: Splitting the dataset D based on the split (f, v).
Poisoning attacks can target positive or negative in-
stances on the left or on the right of the split, leading to
four attack possibilities that we must account for.

observe that, if the attacker flipped a positive instance on
the left of the split, the left side of the split would include
three positive instances and two negative instances. In
this case the entropy of the data would stay the same,
but the new information gain of the split would become
0.05. We compactly represent this information with the
triple (0.05, f ≤ v,+1), meaning that flipping a positive
instance on the left of the split (f, v) would lead to a
new information gain of 0.05. We can similarly compute
the other three triples (0.44, f ≤ v,−1), (0.31, f >
v,+1), (0.07, f > v,−1), thus capturing the effect on
the split (f, v) of all the possible attacker’s actions in
terms of a set of four triples, denoted by G∗(D, f, v).
Observe that G∗(D, f, v) includes at most four elements,
because positive or negative instances may not be present
on the left or on the right of the split, meaning that some
flips may be impossible. By computing G∗(D, f ′, v′)
for each other possible split (f ′, v′), it is possible to
determine whether any attacker’s action might lead to
the identification of a new best split, i.e., a split with a
higher information gain than (f, v).

Our attack algorithm trains a decision tree over the
clean training data and then operates in two steps. The
first step is tree annotation (described in Section III-D):
we annotate each node of the decision tree with the set
of its stable instances. The annotation process is effi-
cient because it boils down to checking the information
available in G∗, which can be directly computed during
decision tree construction, because the training algorithm
computes the information gain G of all the possible splits
anyways. Computing G∗ requires a simple adaptation of
the formula used to compute G. The second step of the
attack is label flipping (described in Section III-E): we
use the computed stability information to identify the
instances to prioritize in the poisoning attack to improve
its efficiency. For each such instance, we flip its label

5

and we retrain just the sub-tree of the decision tree that
may be affected by this change to identify the accuracy
loss. After choosing the instance to attack, e.g., the one
leading to the highest accuracy loss or the first instance
introducing some loss, we train a new decision tree over
the poisoned dataset and we start the attack again until
the maximum number of label flips has been reached.

D. Tree Annotation

We extend each node of the decision tree t with some
auxiliary information: (i) the set of the training instances
t.train used in the node construction, which can be read-
ily identified by instrumenting the training algorithm,
and (ii) the set of the stable instances t.stable, which
is computed by the tree annotation function ANNOTATE
in Algorithm 2. The function takes as input a decision
tree and returns its annotated version. The algorithm
initially assumes all the training instances to be stable
and prunes the set of stable instances whenever it finds
evidence that flipping a label may invalidate the best
split (f, v). This can only happen if there exists another
split (f ′, v′) leading to a higher information gain than
(f, v) after label flipping, or when the information gain
is the same but (f ′, v′) is processed before (f, v) during
tree construction. Assuming D = t.train, this can be
determined by checking each (g, ϕ, y) ∈ G∗(D, f, v)
against each (g′, ϕ′, y′) ∈ G∗(D, f ′, v′): if g′ > g, or
g′ = g and the split (f ′, v′) is processed before (f, v)
in the lexicographic order, then all the instances in the
intersection I = Dϕ

y ∩D
ϕ′

y′ must be removed from V . To
understand the definition of I , observe that I ̸= ∅ when
y = y′ and there exist instances satisfying the predicate
ϕ∧ϕ′, i.e., there exists a class including instances falling
in the portion of the feature space common to ϕ and ϕ′.
For any such instance, a label flip would make (f ′, v′)
the new best split in place of (f, v).

An important point to note is that the identification
of the stable instances can be directly embedded within
the tree construction at training time. Indeed, the tree
construction algorithm (Algorithm 1) must compute the
information gain G for all the possible splits anyway.
We can then modify the algorithm to compute the set
G∗ for all the possible splits, meaning that for each
split we do not compute just a single information gain,
but five (at most). This computation is very efficient,
because it suffices to update the number of the positive
and negative instances falling on the left and on the right
of the split after label flipping, without any need to scan
the entire dataset again. Our implementation directly
integrates the computation of the stable instances in the
tree construction algorithm of scikit-learn [22].

Algorithm 2 Tree annotation algorithm

1: function ANNOTATE(t)
2: t.stable← t.train
3: if t = σ(f, v, tl, tr) then
4: D ← t.train
5: for (g, ϕ, y) ∈ G∗(D, f, v) do
6: for (f ′, v′) ∈ splits(D) \ {(f, v)} do
7: for (g′, ϕ′, y′) ∈ G∗(D, f ′, v′) do
8: if g′ > g ∨ (g′ = g ∧ (f ′, v′) ≺

(f, v)) then
9: I ← Dϕ

y ∩ D
ϕ′

y′

10: t.stable← t.stable \ I
11: t′l ← ANNOTATE(tl)
12: t′r ← ANNOTATE(tr)
13: return σ(f, v, t′l, t

′
r)

14: else
15: return t

E. Label Flipping

The FLIP-RETRAIN function in Algorithm 3 takes
as input an already annotated decision tree t and an
instance (x⃗, y) ∈ t.train to return the new decision tree t′

obtained by replacing (x⃗, y) with (x⃗,−y) in the training
data. The key insight of the function is that, since we pre-
computed stability information for all training instances,
we can retrain just a specific sub-tree of t to construct
the new tree t′, hence t′ does not need to be trained
from scratch. This improves efficiency because retraining
operates just over a subset of the training data rather
than on the entire training set. The function recursively
traverses t until it finds the first node where (x⃗, y) is not
stable, which identifies the sub-tree of t where retraining
is required. Note that the retrained sub-tree must be
annotated again, because its structure may have changed.

Of course, the use of sub-tree retraining alone does not
necessarily suffice to yield an efficient poisoning attack
algorithm. Indeed, although we can efficiently estimate
the impact of poisoning a given instance and retrain just a
sub-tree, we may still have many instances in the training
set. We may then want to restrict the number of instances
to consider in our poisoning attack to further speed up
the process. A relevant insight here is that the stability in-
formation computed by the annotation procedure allows
us to identify those instances leading to a particularly
efficient sub-tree retraining, hence we may prioritize
such instances in our attack strategy. The intuition is that
we can assign a score to each training instance (x⃗, y)
based on the percentage of training instances included
in the first node of the prediction path where (x⃗, y) is

6

Algorithm 3 Retraining algorithm

Require: (x⃗, y) ∈ t.train
1: function FLIP-RETRAIN(t, (x⃗, y))
2: if t = σ(f, v, tl, tr) ∧ (x⃗, y) ∈ t.stable then
3: if xf ≤ v then
4: t′l ← FLIP-RETRAIN(tl, (x⃗, y))
5: return σ(f, v, t′l, tr)
6: else
7: t′r ← FLIP-RETRAIN(tr, (x⃗, y))
8: return σ(f, v, tl, t

′
r)

9: else
10: D ← (t.train \ {(x⃗, y)}) ∪ {(x⃗,−y)}
11: t← TREE-TRAIN(D)
12: return ANNOTATE(t)

not stable. This number s ∈ [0, 1] estimates the cost
of sub-tree retraining when (x⃗, y) is subject to label
flipping. The score information can be used to speed up
the attack by improving the efficiency of early stopping.
In particular, one may sort instances based on increasing
order of score, so that the attack starts from instances
supporting efficient sub-tree retraining and may quickly
hit the early stopping condition.

F. Extension to Tree Ensembles

Our poisoning attack was designed and presented for
traditional decision trees, however decision trees are sel-
dom used in isolation for classification tasks due to their
limited predictive power. Better classifiers can be built
by training ensembles of decision trees, using algorithms
like RF and GBDT. Poisoning decision tree ensembles
using attack strategies like the proposed greedy approach
is even more computationally expensive than targeting
a single decision tree, because an ensemble may in-
clude tens or hundreds of trees to retrain, meaning that
effective speedup strategies are even more important.
Luckily, our proposed attack can be readily generalized
to decision tree ensembles of independently trained trees
like RF classifiers, because our annotation procedure can
be directly applied to the individual trees constituting the
ensemble. Once all the trees in the ensemble have been
independently trained and annotated, we may identify
the candidate instances to attack just by redefining the
notion of score of an instance in terms of the mean of
the scores computed for the individual trees. Intuitively,
this updated notion of score estimates the aggregate cost
of sub-tree retraining for all the trees in the ensemble,
i.e., an instance with a small score ensures efficient sub-
tree retraining in all the trees. Observe that, if the training

algorithm is embarrassingly parallel like RF and there are
at least as many threads as the number of trees to train,
it is possible to retrain all the sub-trees in parallel, hence
it might be more appropriate to replace the mean of the
scores with their maximum, because the execution time
of the slowest thread determines the actual execution
time of the attack. The effectiveness of each label flip is
estimated as the accuracy loss forced on the entire forest.

We observe that our poisoning attack cannot be readily
generalized to ensembles based on interdependent trees,
like GBDT models. The reason is that trees composing
such models are trained sequentially, because the next
tree in the ensemble is trained to minimize the pre-
diction errors produced by the previously trained trees.
Assume then that our poisoning attack is also performed
sequentially and let ti be the tree under attack. Flipping
the label of a training instance of ti may also affect
the construction of some tree tj with j < i, meaning
that the prediction errors performed by the previously
trained trees may change, leading to the training of a
different tree t′i in place of ti. This means that it would
be difficult to make sub-tree retraining an effective way
to optimize the efficiency of the attack. We consider the
generalization of our techniques to GBDT models to be
an intriguing yet challenging direction for future work.

IV. EXPERIMENTAL EVALUATION

We perform our experimental evaluation on four pub-
lic datasets: Musk2 [23], Wine [24], Spambase [25]
and Breast-Cancer [26] (abbreviated as Breast). The key
characteristics of the chosen datasets are reported in
the appendix. All the datasets are tabular and related to
binary classification tasks, thus well-suited for decision
tree learning and inference. Moreover, Musk2, Spambase
and Breast-Cancer have been adopted as benchmarks in
related work [5], [27]. Datasets are split as 80/20 for
training/testing using stratified random sampling.

A. Methodology

We assume the attacker can poison k training in-
stances, ranging from 1% to 10% of the training set.
We consider 10% to be an upper bound for realistic
attacks. Moreover, we assume that the attacker operates
over one of the two classes (the positive class). This
is a realistic assumption because the attacker may be
more interested in disrupting the detection of a specific
class, e.g., the classification of spam emails as spam.
Additionally, targeting a specific class may also harm
the classification of instances of the other class.

Recall that we are not aware of any poisoning attacks
designed to target decision trees, except those proposed

7

in this paper. Our baselines are then general attack
strategies that may be applied to any type of classifier.
We consider three different groups of attack strategies:

1) Greedy [5] and our new attack Timber always
iterate over all the training instances for k rounds
and pick every time the one leading to the highest
accuracy loss upon label flipping at each round.
Timber exploits sub-tree retraining to improve ef-
ficiency. Timber is guaranteed to produce the same
accuracy loss as the Greedy attack strategy, but it
is expected to be faster in practice.

2) Greedy with early stopping (GES) and our Timber
with early stopping (TES) iterate over all the
training instances for k rounds and, at each round,
terminate as soon as they encounter an instance
leading to some accuracy loss upon label flipping.
TES exploits sub-tree retraining and processes
instances in increasing order of score, prioritizing
those where sub-tree retraining is more efficient.

3) Entropy [10] and K-Medoids [10] are model-
agnostic, black-box poisoning attacks operating in
a single round. Entropy chooses the k instances
to flip according to a score based on the entropy
measure, while K-Medoids separates the training
instances into two clusters and chooses the k
instances to flip based on a mathematical distance.

For all the strategies in the groups 1 and 2, we assume
that if none of the processed instances introduces some
accuracy loss, then the attacker flips the one leading to
the smallest increase in accuracy. Although this choice
goes against the attacker’s goal in the short term, it may
lead to model changes, enabling new attacks. Moreover,
this choice forces all the attack strategies to always
flip k instances, leading to a fair comparison. We also
experimented with a simple baseline based on random
label flips [28], [29], [30], but we chose to omit it due
to its poor performance for the budget we consider,
especially in comparison to our proposed attacks.

We measure the effectiveness of different attack strate-
gies in a white-box setting. We first use grid search to
find the best model trained on the clean data. After the
attack, we train a new model over the poisoned dataset
using the same hyperparameters to estimate the accuracy
loss. This setting represents a pessimistic scenario where
the attacker has perfect knowledge of the training data
and hyperparameters of the target model. We compare
the effectiveness of the poisoning attacks in terms of F1
score and accuracy loss. We also consider the F1 score
since the distribution of the class labels of the considered
datasets is unbalanced. Even though Timber optimizes

the loss of accuracy of the model, it also affects the F1
score by inducing misclassifications.

We focus on attacking decision tree ensembles, in
particular RFs (without bootstrap sampling), since they
are normally employed for tabular data classification in
place of individual decision trees. The attacker tunes the
number of trees from 2 to 15 and the maximum depth
of the trees from 2 to 25. More details on the best RF
model for each dataset are provided in the appendix.

B. Attack Efficiency

We first assess the efficiency of the considered attacks
by measuring the running time required to poison 10%
of the training set. This serves as an upper bound
for the time needed to poison smaller subsets. In our
experiments, we set a timeout of ten hours for each
attack. The experiments have been performed on a virtual
machine with 98 GB of RAM and Ubuntu 20.04.6 LTS,
running on a server with an Intel Xeon Gold 6348
2.60GHz. To reduce running times, we rely on parallel
implementations of the different attack strategies, using
16 threads. Training instances to poison are allocated to
the different threads in a round-robin fashion.

Table I presents the running times of Greedy, Timber,
GES and TES across different datasets. The black-box
attacks K-Medoids and Entropy are much faster and
always complete within a few seconds, so their runtimes
are not comparable to white-box strategies and are not
reported in the table to improve readability. Despite
their efficiency, K-Medoids and Entropy are significantly
less effective than the other attack methods, as reported
in Section IV-C. Our experiments confirm that Timber
and TES are faster than their counterparts Greedy and
GES. Remarkably, the Greedy attack strategy turned out
to be infeasible on the Musk2 dataset, exceeding our
timeout of ten hours. The computed speedup on the
Musk2 and Spambase datasets ranges from 2x to 6x,
while it is smaller (less than 2x) on the Wine dataset.
This demonstrates the significant advantage in efficiency
enabled by tree annotation and sub-tree retraining, that
enable performing an attack over the entire training set
in a reasonable amount of time. We finally observe that
Timber and TES require around the same time as Greedy
and GES to complete the attack on Breast-Cancer.

We investigate the reasons behind the different speed-
ups achieved by Timber and TES over Greedy and GES.
We here focus on TES and we refer to the appendix
for a similar discussion on Timber. Figure 4 shows the
empirical cumulative distribution function of the mean
scores of each instance of the training set, averaged
over the k rounds of the TES attack. On Musk2 and

8

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Musk2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Wine

(b)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Spambase

(c)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Breast-Cancer

(d)

Fig. 4: Empirical cumulative distribution function of the mean scores of the training instances averaged over the
rounds of TES on the considered datasets. The scores range from 0 to 1.

TABLE I: Runtime of the poisoning attacks with budget
k equal to 10% of the training set size. Bold represents
the best results in the two groups of columns.

Dataset Runtime

Greedy Timber GES TES

Musk2 >10h 1h41m 3h8m 29m17s
Wine 3h21m 2h59m 1h24m 1h15m

Spambase 6h55m 3h7m 1h12m 14m39s
Breast 2m38s 3m23s 55s 37s

Spambase, more than 60% of the mean scores are below
0.5, meaning that most of the training instances that can
be attacked are located at the root of sub-trees with
few training instances on average, i.e., less than 50%
of the number of instances in the training set, leading
to high efficiency gains. This is particularly evident on
the Musk2 dataset, the considered dataset with more
instances and features, where TES is six times faster
than GES. In contrast, the fact that less than 30% of
the instances have a mean score smaller than 0.5 on
Wine motivates the higher runtime of TES on the dataset,
where the overhead induced by the annotate and sub-tree
retraining is less effectively compensated. Finally, al-
though the majority of the mean scores in Breast-Cancer
fall between 0.3 and 0.6, the dataset is too small to
observe a considerable speedup. This is reasonable, since
Timber and TES are designed to enable greedy poisoning
attacks on large datasets. When the dataset is small and
Greedy terminates in a few minutes, the optimizations
introduced by our attacks may be unneeded.

C. Attack Effectiveness

We now assess the effectiveness of the poisoning
attacks in terms of F1 score loss on the test set. Figure 5
shows the F1 score loss induced by the considered
attacks for each dataset and different values of k (we

just report a single line for Timber and Greedy, because
they always produce the same output). We observe that
the black-box attacks Entropy and K-Medoids are consis-
tently outperformed by the other attacks. For example, on
the Musk2 dataset, the initial F1 score is 0.88 and TES
reduces it to 0.34, while the most effective black-box
attack Entropy reduces it just to 0.49 (+0.15 over TES).
Additionally, Timber/Greedy, which always iterates over
all the training instances, performs better than the early-
stopping attacks TES and GES on Wine, Spambase,
and Breast-Cancer. This is expected since early-stopping
attacks explore only a subset of attack options during
each round. For instance, Timber/Greedy reduces the
F1 score on Wine to 0.58, while TES is less effective,
reducing it to 0.70 (+0.12). It may occasionally happen
that attacks relying on early stopping are more effective
in reducing the F1 score than Timber/Greedy, because
all the considered attacks are greedy. This happens for
TES on the Musk2 dataset, which reduces the F1 score
to 0.34, while Timber reduces the F1 score of the model
to 0.39 (+0.05). Finally, note that TES is more effective
than GES on three datasets out of four, and it is only one
point less effective than GES on Spambase. Its enhanced
efficacy is likely due to sorting the instances exploited
by the attack to improve efficiency. Attacking instances
with lower scores, i.e., retraining sub-trees in which
few training instances fall, allows the attack to perform
more local changes, inducing consistent losses in the
performance of the target model. Ultimately, Timber and
TES are the most effective attacks, with Timber generally
being more effective than TES in reducing the F1 score
but at a higher computational cost.

We can observe the same trends in the effectiveness
of the poisoning attacks when considering the accuracy
loss on the test set instead. For space reasons, we report
the accuracy loss for each dataset and different values
of k in the appendix.

9

1 2 3 4 5 6 7 8 9 10
k (%)

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

Musk2 Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(a)

1 2 3 4 5 6 7 8 9 10
k (%)

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

Wine Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(b)

1 2 3 4 5 6 7 8 9 10
k (%)

0.70

0.75

0.80

0.85

0.90

F1
 sc

or
e

Spambase Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(c)

1 2 3 4 5 6 7 8 9 10
k (%)

0.70

0.75

0.80

0.85

0.90

0.95

F1
 sc

or
e

Breast-Cancer Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(d)

Fig. 5: F1 score of the attacked model under different poisoning attacks for budget k equal to different percentages
of poisoned training data, from 1% to 10%. A red horizontal line represent the F1 score of the model trained on
the clean training set. Note that Timber is guaranteed to produce the F1 score loss as the Greedy attack strategy.

D. Defenses

Our previous evaluation showed that Timber and TES
attacks perform best, as Timber is usually the most
effective and TES is usually the most efficient. We now
show that both Timber and TES are effective attacks
even when applying a defense against poisoning before
training. We recall that poisoning attacks against decision
trees have been under-explored and the same applies to
defenses. We then focus on two model-agnostic defenses:

1) kNN-based defense [5], a popular defense based
on k-Nearest Neighbours (kNN) that performs
training data sanitization. For each instance of the
possibly poisoned training set, it computes its N
nearest neighbors. If the fraction of the neighbors
having the same label is greater than a threshold
η, the algorithm assigns to the instance the label
of these neighbors. The algorithm can be iterated
for M times on the training set.

2) Bagging-based defense [31], a recent defense
based on bagging that performs robust training.
It uses the defended classifier as a base classifier.
It employs a variant of bagging based on hash
functions to generate G subsets of the possibly poi-
soned training set, each containing K% instances
of the training set. Then, it trains G base classifiers
on these subsets. The prediction for a test instances
is obtained by aggregating the predictions of the
base classifiers using hard majority voting.

In our evaluation, we perform grid search over the hy-
perparameters to select the values providing the highest
F1 score on the validation set. This way, we estimate
the effectiveness of the defense in the best possible
setting from the defender’s perspective. We consider
N ∈ {4, 8, 12}, η ∈ {0.6, 0.75, 0.9}, M ∈ {1, 3, 5}, G ∈
{5, 10, . . . , 35, 40} and K ∈ {20%, 10%, 5%, 2.5%},
including also the values used in the work presenting
the defenses [5], [31].

10

TABLE II: F1 score on the test set of the best model
trained on different training sets: F c

1 of the model trained
on the clean training set, F p

1 of the model trained on the
poisoned training set, Fn

1 of the model trained on the
training set sanitized by the kNN-based defense and F b

1

of the model trained by the bagging-based defense on
the poisoned training set.

Dataset F c
1

Timber TES

F p
1 Fn

1 F b
1 F p

1 Fn
1 F b

1

Musk2 0.88 0.39 0.55 0.50 0.34 0.56 0.48
Wine 0.98 0.58 0.81 0.80 0.70 0.83 0.84

Spambase 0.92 0.70 0.78 0.86 0.75 0.78 0.81
Breast 0.97 0.72 0.94 0.97 0.83 0.93 0.95

To understand the effectiveness of the evaluated de-
fenses, we compute four measures over the test set:
the F1 score of the original model trained on the clean
training set (denoted by F c

1), the F1 score of the model
trained over the poisoned dataset (denoted by F p

1) and
the F1 score of the model trained on the poisoned
dataset after applying the defense (denoted by F d

1 , with
d ∈ {n, b} discriminating between the kNN-based de-
fense and the bagging-based defense). This allows us to
compute for each defense d the estimated defense benefit
F d
1 − F p

1 , i.e., the increase in F1 score enabled by the
application of the defense w.r.t. the undefended poisoned
model, and the estimated residual damage F c

1 −F d
1 , i.e.,

the decrease in F1 score w.r.t. the original model
The computed results are reported in Table II. The

numbers show that the analyzed defenses provide some
mitigation against our attacks. In particular, the estimated
defense benefit Fn

1 − F p
1 for the kNN-based defense

ranges between 0.03 and 0.23, with an average value
of 0.15, while the estimated defense benefit F b

1 − F p
1

for the bagging-based defense ranges between 0.06 and
0.25, with an average value of 0.15. Nevertheless, the
damage caused by our poisoning attacks despite the
application of the defenses is significant. The estimated
residual damage F c

1 − Fn
1 for the kNN-based defense

ranges between 0.03 and 0.33, with an average value
of 0.17, while the estimated residual damage F c

1 − F b
1

for the bagging-based defense ranges between 0 and
0.40, with an average of 0.16. This implies that, on
average, our attack reduces the F1 score of the original
model by between 0.16 and 0.17, even when one of
the two defenses is applied. Thus, the analyzed defenses
effectively mitigate the damage of our poisoning attacks,
but they are far from being able to completely thwart
them. The only dataset where the application of the

defense yields a model with comparable performance to
the original one is Breast-Cancer. This can be explained
by the simplicity of this dataset, where a decision stump
(i.e., a decision tree of depth 1) achieves an F1 score of
0.95. This suggests that the classes are easily distinguish-
able, enhancing the effectiveness of the defenses. These
observations are confirmed by looking at the effect of the
defenses on the accuracy, that we report in the appendix.

V. RELATED WORK

We here discuss poisoning attacks and defenses using
the taxonomy provided in [1].

A. Poisoning Attacks

Availability poisoning attacks aim to degrade the ac-
curacy of the target classifier to compromise its utility.
Existing label flip attacks and our new attacks, Timber
and TES, belong to this category, which assumes that the
attacker can only modify the labels of the instances in
the training set. The objective is to find the combination
of flips that leads to the best accuracy loss of the target
model. Label flip attacks have been deeply investigated
for support vector machines [2], [3], [4], [5], linear
regression models [6] and neural networks [7], [8]. To
the best of our knowledge, no work in the literature has
proposed poisoning attacks specifically for decision tree
ensembles. Previous work [32], [28], [30], [13], [33],
[29] evaluates the robustness of decision tree ensembles
against the random label flip attack, a model-agnostic
attack that selects the label to flip randomly. [10] pro-
poses other two model-agnostic attacks, Entropy and K-
Medoids, that are also evaluated on decision tree ensem-
bles. Our work fills an important gap in the literature by
proposing the first poisoning attack specifically tailored
for decision tree ensembles, which is feasible on large
datasets and clearly outperforms other attack approaches.

Other availability poisoning attacks are clean-label,
i.e., they assume that the attacker can modify only
features [34], [35], [36], [12], [11], and hybrid, in the
sense that they target both features and labels [37], [38],
[39]. Bilevel poisoning attacks are the most popular
attacks of these two categories. They find the best
perturbation to apply to the training data by solving a
bilevel optimization problem [34]. Most of the attacks of
this type target differentiable models since they exploit
gradients extracted from the loss function of the target
model to find the best perturbations to apply to the
training instances. However, decision trees are non-
differentiable models. Thus, previous work evaluated
only model-agnostic clean-label and hybrid attacks [40],
[12], [11], [28] on decision tree ensembles. Designing

11

clean-label and hybrid poisoning attacks for decision tree
ensembles is a relevant direction for future work.

Finally, another category of poisoning attacks aims
at harming the integrity of ML models [36], [41], [42],
[43], [44], [45], [46], [47], [48]. The objective is to
preserve the general performance of the target model,
while causing the misclassification of specific samples.
The aim of these attacks is different from ours, since our
two proposed attacks target the availability of decision
tree ensembles, so we do not compare against this cate-
gory. However, even integrity attacks against decision
tree ensembles have not been deeply investigated in
the literature. Designing efficient and effective integrity-
poisoning attacks against decision tree ensembles is
another interesting line of research for future work.

B. Defenses Against Poisoning

We focus on defenses against availability poisoning
attacks, in particular label flip attacks, grouped into two
classes: training data sanitization and robust training [1].

Training data sanitization defenses are model-agnostic
approaches that remove poisoning samples from the
training set before training by recognizing instances
that are different from the other legitimate training
points. Previously proposed techniques exploit k-Nearest
Neighbours classifiers [5], clustering algorithms [49] and
outlier detection algorithms [50], [51].

Robust training defenses aim instead at mitigating
the effect of poisoning during training. In particular,
the defenses consist of training algorithms that mitigate
the effect of poisoned samples. Some model-agnostic
defenses of this type exploit bagging, leveraging the
observation that using small subsets of the training set
for training ensembles can mitigate the effect of poison-
ing [2], [52], [53], [54], [31], [28]. These defenses and
the Randomized Smoothing-based defense [55] can also
provide certificates about the robustness of the model to
availability poisoning attacks. Another defense proposed
in [56] removes instances from the training set if they in-
duce a significant loss in accuracy when used in training.
Finally, specific defenses for differentiable models have
been proposed and exploit robust optimization [57], [58],
[59], regularization [27], [60] and loss correction [61].

To the best of our knowledge, no robust training
defenses have been specifically designed to protect deci-
sion tree ensembles, even though all the model-agnostic
defenses previously described can be applied. Algo-
rithms that verify the robustness of decision trees against
poisoning attacks have been proposed instead [62],
[63]. [28] is the only work specifically evaluating the
application of a defense to decision tree ensembles,

in particular RFs, against availability poisoning attacks
like random label flip. It employs the hash bagging
defense inspired by previous work [53], [54], [31], and
it observes a degradation of the performance of the RFs
even when adopting the defense. However, it considers
unrealistic attack budgets ranging from 10% to 30% of
training instances. Our work is orthogonal to this work
since we do not focus on defenses, but we propose new
attacks specifically tailored for decision tree ensembles.
We demonstrate that our attacks Timber and TES are
still effective when one representative defense [5], [31]
from each group is adopted, even when we consider more
realistic attacker’s capabilities, i.e., the attacker can flip
at most 10% of the labels of the training set. The two
defenses partially mitigate the effect of the attacks, but
they are not able to thwart them. We leave the evaluation
of other defenses as future work, as well as designing
defenses specifically tailored to enhance the robustness
of decision tree ensembles to poisoning attacks.

VI. CONCLUSION

We presented Timber, the first white-box poisoning
attack for decision trees. Timber uses a greedy strategy,
incorporating an annotation procedure for the tree and
sub-tree retraining to efficiently assess the impact of
poisoned instances, optimizing the computational cost of
the attack. This allows Timber to scale to larger datasets
than standard greedy methods. The Timber variant with
early stopping offers faster runtimes, though with poten-
tially reduced effectiveness. We also extended Timber to
decision tree ensembles, particularly random forests, to
demonstrate its relevance in real-world machine learning
applications. Our experiments on public datasets show
that Timber and its variant with early stopping outper-
form existing black-box strategies in terms of attack
effectiveness and existing greedy attacks in terms of
attack efficiency. Moreover, our two attacks are not
thwarted by two representative defenses.

As future work, we would like to generalize our
techniques to GBDT models and design more powerful
defenses for poisoning attacks specific to decision tree
ensembles. We also plan to study how to efficiently per-
form clean-label and integrity poisoning attacks against
decision tree ensembles, to fill the gap in the literature.

Acknowledgements: This research was supported by
project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European
Union - NextGenerationEU. Moreover, it acknowledges
support from the European Union - Next-GenerationEU
- PNRR – M.4 C.2, I.1.1 - PRIN 2022 WHAM!,
2022ZZX57L, H53D23003750006.

12

REFERENCES

[1] A. E. Cinà, K. Grosse, A. Demontis, S. Vascon, W. Zellinger,
B. A. Moser, A. Oprea, B. Biggio, M. Pelillo, and F. Roli,
“Wild patterns reloaded: A survey of machine learning
security against training data poisoning,” ACM Comput. Surv.,
vol. 55, no. 13s, pp. 294:1–294:39, 2023. [Online]. Available:
https://doi.org/10.1145/3585385

[2] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli,
“Bagging classifiers for fighting poisoning attacks in adversarial
classification tasks,” in Multiple Classifier Systems - 10th
International Workshop, MCS 2011, Naples, Italy, June 15-
17, 2011. Proceedings, ser. Lecture Notes in Computer
Science, C. Sansone, J. Kittler, and F. Roli, Eds., vol.
6713. Springer, 2011, pp. 350–359. [Online]. Available:
https://doi.org/10.1007/978-3-642-21557-5 37

[3] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips
attack on support vector machines,” in ECAI 2012 - 20th
European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012)
System Demonstrations Track, Montpellier, France, August
27-31 , 2012, ser. Frontiers in Artificial Intelligence and
Applications, L. D. Raedt, C. Bessiere, D. Dubois, P. Doherty,
P. Frasconi, F. Heintz, and P. J. F. Lucas, Eds., vol.
242. IOS Press, 2012, pp. 870–875. [Online]. Available:
https://doi.org/10.3233/978-1-61499-098-7-870

[4] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli,
“Support vector machines under adversarial label contamination,”
Neurocomputing, vol. 160, pp. 53–62, 2015. [Online]. Available:
https://doi.org/10.1016/j.neucom.2014.08.081

[5] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label
sanitization against label flipping poisoning attacks,” in ECML
PKDD 2018 Workshops - Nemesis 2018, UrbReas 2018,
SoGood 2018, IWAISe 2018, and Green Data Mining 2018,
Dublin, Ireland, September 10-14, 2018, Proceedings, ser.
Lecture Notes in Computer Science, C. Alzate, A. Monreale,
H. Assem, A. Bifet, T. S. Buda, B. Caglayan, B. Drury,
E. Garcı́a-Martı́n, R. Gavaldà, S. Kramer, N. Lavesson,
M. Madden, I. M. Molloy, M. Nicolae, and M. Sinn, Eds.,
vol. 11329. Springer, 2018, pp. 5–15. [Online]. Available:
https://doi.org/10.1007/978-3-030-13453-2 1

[6] P. Awasthi, M. Balcan, and P. M. Long, “The power of
localization for efficiently learning linear separators with noise,”
J. ACM, vol. 63, no. 6, pp. 50:1–50:27, 2017. [Online].
Available: https://doi.org/10.1145/3006384

[7] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning requires rethinking generalization,”
in 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. [Online]. Available:
https://openreview.net/forum?id=Sy8gdB9xx

[8] M. Zhang, L. Hu, C. Shi, and X. Wang, “Adversarial
label-flipping attack and defense for graph neural networks,”
in 20th IEEE International Conference on Data Mining,
ICDM 2020, Sorrento, Italy, November 17-20, 2020, C. Plant,
H. Wang, A. Cuzzocrea, C. Zaniolo, and X. Wu, Eds. IEEE,
2020, pp. 791–800. [Online]. Available: https://doi.org/10.1109/
ICDM50108.2020.00088

[9] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do
tree-based models still outperform deep learning on typical
tabular data?” in Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022.
[Online]. Available: http://papers.nips.cc/paper files/paper/2022/

hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets
and Benchmarks.html

[10] H. Zhang, N. Cheng, Y. Zhang, and Z. Li, “Label flipping
attacks against naive bayes on spam filtering systems,” Appl.
Intell., vol. 51, no. 7, pp. 4503–4514, 2021. [Online]. Available:
https://doi.org/10.1007/s10489-020-02086-4

[11] A. Prud’Homme and B. Kantarci, “Poisoning attack anticipation
in mobile crowdsensing: A competitive learning-based study,”
in WiseMLWiSec 2021: Proceedings of the 3rd ACM Workshop
on Wireless Security and Machine Learning, Abu Dhabi, United
Arab Emirates, July 2, 2021, C. Pöpper and M. Vanhoef,
Eds. ACM, 2021, pp. 73–78. [Online]. Available: https:
//doi.org/10.1145/3468218.3469050

[12] K. Talty, J. Stockdale, and N. D. Bastian, “A sensitivity
analysis of poisoning and evasion attacks in network intrusion
detection system machine learning models,” in 2021 IEEE
Military Communications Conference, MILCOM 2021, San
Diego, CA, USA, November 29 - Dec. 2, 2021. IEEE,
2021, pp. 1011–1016. [Online]. Available: https://doi.org/10.
1109/MILCOM52596.2021.9652959

[13] A. R. Shahid, A. Imteaj, P. Y. Wu, D. A. Igoche, and
T. Alam, “Label flipping data poisoning attack against wearable
human activity recognition system,” in IEEE Symposium
Series on Computational Intelligence, SSCI 2022, Singapore,
December 4-7, 2022, H. Ishibuchi, C. Kwoh, A. Tan,
D. Srinivasan, C. Miao, A. Trivedi, and K. A. Crockett,
Eds. IEEE, 2022, pp. 908–914. [Online]. Available: https:
//doi.org/10.1109/SSCI51031.2022.10022015

[14] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,”
CoRR, vol. abs/1712.05526, 2017. [Online]. Available: http:
//arxiv.org/abs/1712.05526

[15] R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You
autocomplete me: Poisoning vulnerabilities in neural code
completion,” in 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, M. D. Bailey and
R. Greenstadt, Eds. USENIX Association, 2021, pp. 1559–
1575. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/schuster

[16] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[17] “Timber GitHub Repository,” https://github.com/
massimo-vettori/timber, accessed: 2025-03-02.

[18] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Wadsworth, 1984.

[19] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[20] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine.” The Annals of Statistics, vol. 29, no. 5, pp.
1189 – 1232, 2001. [Online]. Available: https://doi.org/10.1214/
aos/1013203451

[21] J. Y. Chang and E. G. Im, “Data Poisoning Attack on Random
Forest Classification Model,” 2020.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[23] “Musk2 Dataset,” https://archive.ics.uci.edu/dataset/75/musk+
version+2, accessed: 2024-09-24.

[24] “Wine Dataset,” https://archive.ics.uci.edu/dataset/186/wine+
quality, accessed: 2024-09-24.

[25] “Spambase Dataset,” https://archive.ics.uci.edu/dataset/94/
spambase, accessed: 2024-09-24.

13

https://doi.org/10.1145/3585385
https://doi.org/10.1007/978-3-642-21557-5_37
https://doi.org/10.3233/978-1-61499-098-7-870
https://doi.org/10.1016/j.neucom.2014.08.081
https://doi.org/10.1007/978-3-030-13453-2_1
https://doi.org/10.1145/3006384
https://openreview.net/forum?id=Sy8gdB9xx
https://doi.org/10.1109/ICDM50108.2020.00088
https://doi.org/10.1109/ICDM50108.2020.00088
http://papers.nips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/0378c7692da36807bdec87ab043cdadc-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/s10489-020-02086-4
https://doi.org/10.1145/3468218.3469050
https://doi.org/10.1145/3468218.3469050
https://doi.org/10.1109/MILCOM52596.2021.9652959
https://doi.org/10.1109/MILCOM52596.2021.9652959
https://doi.org/10.1109/SSCI51031.2022.10022015
https://doi.org/10.1109/SSCI51031.2022.10022015
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1712.05526
https://www.usenix.org/conference/usenixsecurity21/presentation/schuster
https://www.usenix.org/conference/usenixsecurity21/presentation/schuster
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://github.com/massimo-vettori/timber
https://github.com/massimo-vettori/timber
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://archive.ics.uci.edu/dataset/75/musk+version+2
https://archive.ics.uci.edu/dataset/75/musk+version+2
https://archive.ics.uci.edu/dataset/186/wine+quality
https://archive.ics.uci.edu/dataset/186/wine+quality
https://archive.ics.uci.edu/dataset/94/spambase
https://archive.ics.uci.edu/dataset/94/spambase

[26] “Breast cancer Dataset,” http://archive.ics.uci.edu/dataset/14/
breast+cancer, accessed: 2024-09-24.

[27] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines
under adversarial label noise,” in Proceedings of the 3rd
Asian Conference on Machine Learning, ACML 2011, Taoyuan,
Taiwan, November 13-15, 2011, ser. JMLR Proceedings, C. Hsu
and W. S. Lee, Eds., vol. 20. JMLR.org, 2011, pp. 97–112.
[Online]. Available: http://proceedings.mlr.press/v20/biggio11/
biggio11.pdf

[28] M. Anisetti, C. A. Ardagna, A. Balestrucci, N. Bena, E. Damiani,
and C. Y. Yeun, “On the robustness of random forest against
untargeted data poisoning: An ensemble-based approach,”
IEEE Trans. Sustain. Comput., vol. 8, no. 4, pp. 540–554,
2023. [Online]. Available: https://doi.org/10.1109/TSUSC.2023.
3293269

[29] F. A. Yerlikaya and S. Bahtiyar, “Data poisoning attacks against
machine learning algorithms,” Expert Syst. Appl., vol. 208,
p. 118101, 2022. [Online]. Available: https://doi.org/10.1016/j.
eswa.2022.118101

[30] C. Dunn, N. Moustafa, and B. Turnbull, “Robustness evaluations
of sustainable machine learning models against data poisoning
attacks in the internet of things,” Sustainability, vol. 12, no. 16,
2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/
16/6434

[31] R. Chen, Z. Li, J. Li, J. Yan, and C. Wu, “On collective
robustness of bagging against data poisoning,” in International
Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, ser. Proceedings of Machine
Learning Research, K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162.
PMLR, 2022, pp. 3299–3319. [Online]. Available: https:
//proceedings.mlr.press/v162/chen22k.html

[32] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The
security of machine learning,” Mach. Learn., vol. 81, no. 2,
pp. 121–148, 2010. [Online]. Available: https://doi.org/10.1007/
s10994-010-5188-5

[33] K. Aryal, M. Gupta, and M. Abdelsalam, “Analysis of
label-flip poisoning attack on machine learning based malware
detector,” in IEEE International Conference on Big Data,
Big Data 2022, Osaka, Japan, December 17-20, 2022,
S. Tsumoto, Y. Ohsawa, L. Chen, D. V. den Poel, X. Hu,
Y. Motomura, T. Takagi, L. Wu, Y. Xie, A. Abe, and
V. Raghavan, Eds. IEEE, 2022, pp. 4236–4245. [Online].
Available: https://doi.org/10.1109/BigData55660.2022.10020528

[34] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks
against support vector machines,” in Proceedings of the 29th
International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc
/ Omnipress, 2012. [Online]. Available: http://icml.cc/2012/
papers/880.pdf

[35] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli,
“Is feature selection secure against training data poisoning?” in
Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, ser. JMLR
Workshop and Conference Proceedings, F. R. Bach and D. M.
Blei, Eds., vol. 37. JMLR.org, 2015, pp. 1689–1698. [Online].
Available: http://proceedings.mlr.press/v37/xiao15.html

[36] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice,
V. Wongrassamee, E. C. Lupu, and F. Roli, “Towards poisoning
of deep learning algorithms with back-gradient optimization,” in
Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, AISec@CCS 2017, Dallas, TX, USA, November 3,
2017, B. Thuraisingham, B. Biggio, D. M. Freeman, B. Miller,
and A. Sinha, Eds. ACM, 2017, pp. 27–38. [Online]. Available:
https://doi.org/10.1145/3128572.3140451

[37] J. Feng, Q. Cai, and Z. Zhou, “Learning to confuse: Generating
training time adversarial data with auto-encoder,” in Advances in

Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, and R. Garnett, Eds., 2019, pp. 11 971–11 981.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/1ce83e5d4135b07c0b82afffbe2b3436-Abstract.html

[38] L. Fowl, P. Chiang, M. Goldblum, J. Geiping, A. Bansal,
W. Czaja, and T. Goldstein, “Preventing unauthorized use
of proprietary data: Poisoning for secure dataset release,”
CoRR, vol. abs/2103.02683, 2021. [Online]. Available: https:
//arxiv.org/abs/2103.02683

[39] S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, B. Bonet and
S. Koenig, Eds. AAAI Press, 2015, pp. 2871–2877. [Online].
Available: https://doi.org/10.1609/aaai.v29i1.9569

[40] L. Verde, F. Marulli, and S. Marrone, “Exploring the impact of
data poisoning attacks on machine learning model reliability,”
in Knowledge-Based and Intelligent Information & Engineering
Systems: Proceedings of the 25th International Conference
KES-2021, Virtual Event / Szczecin, Poland, 8-10 September
2021, ser. Procedia Computer Science, J. Watróbski, W. Salabun,
C. Toro, C. Zanni-Merk, R. J. Howlett, and L. C. Jain, Eds.,
vol. 192. Elsevier, 2021, pp. 2624–2632. [Online]. Available:
https://doi.org/10.1016/j.procs.2021.09.032

[41] P. W. Koh and P. Liang, “Understanding black-box predictions
via influence functions,” in Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 2017, pp. 1885–1894. [Online]. Available: http:
//proceedings.mlr.press/v70/koh17a.html

[42] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer,
T. Dumitras, and T. Goldstein, “Poison frogs! targeted clean-
label poisoning attacks on neural networks,” in Advances in
Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., 2018, pp. 6106–6116.
[Online]. Available: https://proceedings.neurips.cc/paper/2018/
hash/22722a343513ed45f14905eb07621686-Abstract.html

[43] J. Guo and C. Liu, “Practical poisoning attacks on neural
networks,” in Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XXVII, ser. Lecture Notes in Computer Science, A. Vedaldi,
H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12372.
Springer, 2020, pp. 142–158. [Online]. Available: https:
//doi.org/10.1007/978-3-030-58583-9 9

[44] W. R. Huang, J. Geiping, L. Fowl, G. Taylor, and
T. Goldstein, “Metapoison: Practical general-purpose clean-
label data poisoning,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/8ce6fc704072e351679ac97d4a985574-Abstract.html

[45] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Evaluating backdooring attacks on deep neural networks,” IEEE
Access, vol. 7, pp. 47 230–47 244, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2909068

[46] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang,
and X. Zhang, “Trojaning attack on neural networks,”
in 25th Annual Network and Distributed System Security

14

http://archive.ics.uci.edu/dataset/14/breast+cancer
http://archive.ics.uci.edu/dataset/14/breast+cancer
http://proceedings.mlr.press/v20/biggio11/biggio11.pdf
http://proceedings.mlr.press/v20/biggio11/biggio11.pdf
https://doi.org/10.1109/TSUSC.2023.3293269
https://doi.org/10.1109/TSUSC.2023.3293269
https://doi.org/10.1016/j.eswa.2022.118101
https://doi.org/10.1016/j.eswa.2022.118101
https://www.mdpi.com/2071-1050/12/16/6434
https://www.mdpi.com/2071-1050/12/16/6434
https://proceedings.mlr.press/v162/chen22k.html
https://proceedings.mlr.press/v162/chen22k.html
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1109/BigData55660.2022.10020528
http://icml.cc/2012/papers/880.pdf
http://icml.cc/2012/papers/880.pdf
http://proceedings.mlr.press/v37/xiao15.html
https://doi.org/10.1145/3128572.3140451
https://proceedings.neurips.cc/paper/2019/hash/1ce83e5d4135b07c0b82afffbe2b3436-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1ce83e5d4135b07c0b82afffbe2b3436-Abstract.html
https://arxiv.org/abs/2103.02683
https://arxiv.org/abs/2103.02683
https://doi.org/10.1609/aaai.v29i1.9569
https://doi.org/10.1016/j.procs.2021.09.032
http://proceedings.mlr.press/v70/koh17a.html
http://proceedings.mlr.press/v70/koh17a.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://doi.org/10.1007/978-3-030-58583-9_9
https://doi.org/10.1007/978-3-030-58583-9_9
https://proceedings.neurips.cc/paper/2020/hash/8ce6fc704072e351679ac97d4a985574-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8ce6fc704072e351679ac97d4a985574-Abstract.html
https://doi.org/10.1109/ACCESS.2019.2909068

Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018 03A-5 Liu paper.pdf

[47] T. A. Nguyen and A. T. Tran, “Wanet - imperceptible warping-
based backdoor attack,” in 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=eEn8KTtJOx

[48] E. Sarkar, H. Benkraouda, G. Krishnan, H. Gamil, and
M. Maniatakos, “Facehack: Attacking facial recognition systems
using malicious facial characteristics,” IEEE Trans. Biom.
Behav. Identity Sci., vol. 4, no. 3, pp. 361–372, 2022. [Online].
Available: https://doi.org/10.1109/TBIOM.2021.3132132

[49] R. Laishram and V. V. Phoha, “Curie: A method for
protecting SVM classifier from poisoning attack,” CoRR, vol.
abs/1606.01584, 2016. [Online]. Available: http://arxiv.org/abs/
1606.01584

[50] C. Frederickson, M. Moore, G. Dawson, and R. Polikar,
“Attack strength vs. detectability dilemma in adversarial
machine learning,” in 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil,
July 8-13, 2018. IEEE, 2018, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/IJCNN.2018.8489495

[51] J. Steinhardt, P. W. Koh, and P. Liang, “Certified
defenses for data poisoning attacks,” in Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 3517–3529.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/
hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html

[52] J. Jia, X. Cao, and N. Z. Gong, “Intrinsic certified robustness
of bagging against data poisoning attacks,” in Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021. AAAI Press, 2021, pp. 7961–7969. [Online].
Available: https://doi.org/10.1609/aaai.v35i9.16971

[53] A. Levine and S. Feizi, “Deep partition aggregation: Provable
defenses against general poisoning attacks,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online].
Available: https://openreview.net/forum?id=YUGG2tFuPM

[54] W. Wang, A. Levine, and S. Feizi, “Improved certified defenses
against data poisoning with (deterministic) finite aggregation,”
in International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings
of Machine Learning Research, K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvári, G. Niu, and S. Sabato, Eds., vol.
162. PMLR, 2022, pp. 22 769–22 783. [Online]. Available:
https://proceedings.mlr.press/v162/wang22m.html

[55] E. Rosenfeld, E. Winston, P. Ravikumar, and J. Z. Kolter,
“Certified robustness to label-flipping attacks via randomized
smoothing,” in Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, ser. Proceedings of Machine Learning Research, vol.
119. PMLR, 2020, pp. 8230–8241. [Online]. Available:
http://proceedings.mlr.press/v119/rosenfeld20b.html

[56] B. Nelson, M. Barreno, F. Jack Chi, A. D. Joseph, B. I. P.
Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia,
Misleading Learners: Co-opting Your Spam Filter. Boston,
MA: Springer US, 2009, pp. 17–51. [Online]. Available:
https://doi.org/10.1007/978-0-387-88735-7 2

[57] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and

A. Stewart, “Sever: A robust meta-algorithm for stochastic
optimization,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 2019, pp. 1596–1606. [Online]. Available:
http://proceedings.mlr.press/v97/diakonikolas19a.html

[58] C. Liu, B. Li, Y. Vorobeychik, and A. Oprea, “Robust linear
regression against training data poisoning,” in Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security,
AISec@CCS 2017, Dallas, TX, USA, November 3, 2017,
B. Thuraisingham, B. Biggio, D. M. Freeman, B. Miller, and
A. Sinha, Eds. ACM, 2017, pp. 91–102. [Online]. Available:
https://doi.org/10.1145/3128572.3140447

[59] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru,
and B. Li, “Manipulating machine learning: Poisoning attacks
and countermeasures for regression learning,” in 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA. IEEE
Computer Society, 2018, pp. 19–35. [Online]. Available:
https://doi.org/10.1109/SP.2018.00057

[60] A. Demontis, B. Biggio, G. Fumera, G. Giacinto, and F. Roli,
“Infinity-norm support vector machines against adversarial label
contamination,” in Proceedings of the First Italian Conference on
Cybersecurity (ITASEC17), Venice, Italy, January 17-20, 2017,
ser. CEUR Workshop Proceedings, A. Armando, R. Baldoni, and
R. Focardi, Eds., vol. 1816. CEUR-WS.org, 2017, pp. 106–115.
[Online]. Available: https://ceur-ws.org/Vol-1816/paper-11.pdf

[61] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction
approach,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 2017, pp. 2233–2241.
[Online]. Available: https://doi.org/10.1109/CVPR.2017.240

[62] S. Drews, A. Albarghouthi, and L. D’Antoni, “Proving
data-poisoning robustness in decision trees,” in Proceedings
of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI
2020, London, UK, June 15-20, 2020, A. F. Donaldson
and E. Torlak, Eds. ACM, 2020, pp. 1083–1097. [Online].
Available: https://doi.org/10.1145/3385412.3385975

[63] A. P. Meyer, A. Albarghouthi, and L. D’Antoni, “Certifying
robustness to programmable data bias in decision trees,”
in Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,
and J. W. Vaughan, Eds., 2021, pp. 26 276–26 288.
[Online]. Available: https://proceedings.neurips.cc/paper/2021/
hash/dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html

15

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://openreview.net/forum?id=eEn8KTtJOx
https://doi.org/10.1109/TBIOM.2021.3132132
http://arxiv.org/abs/1606.01584
http://arxiv.org/abs/1606.01584
https://doi.org/10.1109/IJCNN.2018.8489495
https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html
https://doi.org/10.1609/aaai.v35i9.16971
https://openreview.net/forum?id=YUGG2tFuPM
https://proceedings.mlr.press/v162/wang22m.html
http://proceedings.mlr.press/v119/rosenfeld20b.html
https://doi.org/10.1007/978-0-387-88735-7_2
http://proceedings.mlr.press/v97/diakonikolas19a.html
https://doi.org/10.1145/3128572.3140447
https://doi.org/10.1109/SP.2018.00057
https://ceur-ws.org/Vol-1816/paper-11.pdf
https://doi.org/10.1109/CVPR.2017.240
https://doi.org/10.1145/3385412.3385975
https://proceedings.neurips.cc/paper/2021/hash/dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html

APPENDIX

In this section, we present figures and tables that
include information and experimental results omitted
from the main body of the paper.

We first show in Table III the key characteristics of
the datasets and in Table IV the details of the best RF
model for each dataset.

We then show in Figure 6 the empirical cumulative
distribution function of the mean scores of each instance
in the training set, averaged over k rounds of the
Timber attack, where k is set to 10% of the training
set size. The distributions of the mean scores across the
datasets are similar to those observed for the TES attack.
Therefore, the reasoning behind the speed-up of Timber
over Greedy follows the same rationale as the speed-up
of TES over GES (see Section IV-B).

Figure 7 instead shows the accuracy loss on the best
model for each dataset, induced by the pool of consid-
ered attacks across different values of k. The trends in
the results are similar to those observed for the F1 score
loss, confirming the insights into the effectiveness of the
attacks derived from the discussion on the F1 score loss
induced by each attack (see Section IV-C).

Finally, we show in Table V the effectiveness of the
evaluated defenses, using accuracy as the performance
metric. In particular, we compute four measures over
the test set: the accuracy of the original model trained
on the clean training set (denoted by ac), the accuracy of
the model trained over the poisoned dataset created by
Timber or TES (denoted by ap) and the accuracy of the
model trained on the poisoned dataset after applying the
defense (denoted by ad, with d ∈ {n, b} discriminating
between the kNN-based defense and the bagging-based
defense). The results align with those derived from the
F1 score evaluations (see Section IV-D), showing that
the defenses can mitigate the impact of both attacks but
cannot actually thwart them.

TABLE III: Dataset statistics.

Dataset Instances Features Distribution

Musk2 6,598 166 85%/15%
Wine 6,497 11 75%/25%

Spambase 4,601 57 61%/39%
Breast 569 30 63%/37%

TABLE IV: Number of trees, maximum depth, accuracy
and F1 score on the test set of the RF.

Dataset # Trees Max. Depth Accuracy F1 score

Musk2 7 20 0.96 0.88
Wine 14 9 0.99 0.98

Spambase 15 20 0.94 0.92
Breast 14 7 0.97 0.97

TABLE V: Accuracy on the test set of the best model
trained on different training sets: ac of the model trained
on the clean training set, ap of the model trained on the
poisoned training set, an of the model trained on the
training set sanitized by the kNN-based defense and ab

of the model trained by the bagging-based defense on
the poisoned training set.

Dataset ac
Timber TES

ap an ab ap an ab

Musk2 0.96 0.88 0.90 0.89 0.88 0.90 0.88
Wine 0.99 0.86 0.92 0.91 0.89 0.93 0.93

Spambase 0.94 0.81 0.85 0.90 0.83 0.85 0.87
Breast 0.96 0.71 0.92 0.96 0.81 0.91 0.96

16

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Musk2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Wine

(b)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Spambase

(c)

0.0 0.2 0.4 0.6 0.8 1.0
score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

Breast-Cancer

(d)

Fig. 6: Empirical cumulative distribution function of the mean scores of the training instances over the iterations
of Timber on the considered datasets. The scores range from 0 to 1.

1 2 3 4 5 6 7 8 9 10
k (%)

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Musk2 Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(a)

1 2 3 4 5 6 7 8 9 10
k (%)

0.850

0.875

0.900

0.925

0.950

0.975

Ac
cu

ra
cy

Wine Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(b)

1 2 3 4 5 6 7 8 9 10
k (%)

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

Spambase Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(c)

1 2 3 4 5 6 7 8 9 10
k (%)

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Breast-Cancer Test set

Before Attack
Entropy
K-Medoids
GES
TES
Timber/Greedy

(d)

Fig. 7: Accuracy of the attacked model under different poisoning attacks for budget k equal to different percentages
of poisoned training data, from 1% to 10%. A red horizontal line represent the accuracy of the model trained on the
clean training set. Note that Timber is guaranteed to produce the same accuracy loss as the Greedy attack strategy.

17

	Introduction
	Background
	Supervised Learning
	Decision Trees
	Tree Ensembles

	Poisoning Decision Trees
	Threat Model
	Baselines and Challenges
	Timber: Attack Overview
	Tree Annotation
	Label Flipping
	Extension to Tree Ensembles

	Experimental Evaluation
	Methodology
	Attack Efficiency
	Attack Effectiveness
	Defenses

	Related Work
	Poisoning Attacks
	Defenses Against Poisoning

	Conclusion
	References
	Appendix

