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The rise of Machine Learning (ML)

Target Model User

Classification task

ML found a wide range of applications, in
particular supervised learning.
Key service: classification

• A classifier (ML model) h : X 7→ Y is a
function assigning a class label y ∈ Y
to each element ~x ∈ X .

• Classifiers are normally trained on a
training set, i.e., a set of correctly
labeled instances {(~xi, yi))}i.

• ML is vulnerable in an adversarial
setting! The attacker is defined as
A : X → 2X , that maps each instance
into a set of possible perturbations.
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Black-box evasion attacks

White-box evasion attack

Target Model 
FGSM / FGV

Evasion attack
Given a classifier h and an instance~x such
that h(~x) = y, an evasion attack against~x
is any instance~z ∈ A(~x) such that
h(~z) 6= y.

How to generate an evasion attack?

• In the white-box setting, the
attacker has full knowledge of h
and exploits methods like Fast
Gradient Sign Method (FGSM)/
Fast Gradient Value (FGV).

• In the black-box setting, the
attacker has no knowledge
about h and limited access to it.
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Two-step attack strategy

Target Model 

Surrogate Model 

Target Model 
FGSM / FGV

Surrogate Model 

Step 1: Surrogate Model Training

Step 2: Evasion Attack Crafting

Transferability property

Evasion attacks often generalize across
different ML models.

The attacker can adopt the two steps
attack strategy [1]:

1. The attacker trains a surrogate
model ĥ using information
extracted from h.

2. The attacker generates evasion
attacks ~z against ĥ and "transfers"
them to h.
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Two-step attack strategy - criticalities

Objective in the black-box setting

The attacker’s budget, i.e., the number of queries to the target model, often is limited, e.g.,
query access might require a payment, like in the case of the Google Cloud Vision API.

Objective: Maximize the number of successful evasion attacks given a limited budget.

Inherent tension between the two steps

Two conflicting needs emerge:
• The attacker needs to query the target model to disclose its behavior.
• The attacker wants to query the target model with as many evasion attacks as

possible.

Disadvantages of the traditional two-steps attack

• The two steps are strictly separated.
• The strategy is sub-optimal.
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Research questions

Why should the attacker follow a fixed two-step strategy and not resort to a
more sophisticated approach which dynamically learns how to behave?

Solution

We present AMEBA, a new adaptive attack strategy, which dynamically learns whether
queries to the target model should be leveraged for surrogate model training (step 1) or for
evasion attack crafting (step 2).

In our paper:

1. Definition of the threat model.
2. Definition of AMEBA through the reduction from the two-steps evasion

attack problem to the Multi-Armed Bandit (MAB) problem.
3. Experimental evaluation on public datasets and discussion.
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Threat model

Target Model 

Surrogate Model 

FGSM / FGV

Surrogate Model 

Available Datasets

Train action

Attack action

 

 ?  ?

Target Model 

YES YES

NO

NO

Available Datasets
The attacker has access to 3 datasets
(queues):
• Dtrn used for surrogate model

training.
• Datk used for evasion attacks

crafting.
• Dun used to collect labels from h.

Available Actions

Train: the attacker asks h for a
prediction and trains ĥ.

Attack: the attacker crafts~z against ĥ
from~x ∈ Datk and submits~z to h, if
possible. Otherwise the attacker pushes
(~x, y) in Datk.
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Multi-Armed Bandit (MAB)

MAB optimization problem with Bernoulli-Beta bandits

Given a set of K ≥ 2 possible actionsA = {a1, ..., aK} and T ≥ 1 rounds, MAB requires to
choose the sequence of T actions fromA which maximizes a reward.
The assumptions are:
• The rewards are 0 or 1 for each action and are distributed according to a Bernoulli

probability distribution independent and different for each action.
• It is only possible to observe the reward for the selected action.
• θak is the unknown mean reward (probability of success) of action ak.

A well-known solution is given by the Thompson Sampling algorithm [3].
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Reduction and AMEBA

MAB Two-steps evasion problem
Number of rounds T Attacker’s budget (one query per round)

Set of actions A = {a1, . . . , ak} A = {Train,Attack}

Rewards rak
rTrain = 1 if similarity(h, ĥ) improves

rAttack = 1 if h(~z) 6= y

Why is the rewards scheme effective?

• Low success rate Attack =⇒ improve similarity(h, ĥ).

• similarity(h, ĥ) reaches a plateau =⇒ exploit Attack.

AMEBA implementation

• AMEBA can be simply defined using a MAB solving algorithm!
• What happens if Attack cannot be perfomed? Perform the Train action!

• similarity(h, ĥ) = CROSSVALSCORE(ĥ,Dtrn).
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Experimental evaluation

We compare AMEBA against the traditional two-steps attack strategy in terms
of:

• Number of successful evasion attacks.
• Transferability of the evasion attacks.

Evasion attacks are crafted using the FGV method [2].

Experimental datasets and settings:
Dataset |Dtrn| |Datk| ε attacker’s budget Surrogate Target Target accuracy

Spambase 100 900/
1900

0.10/
0.15

900/
1900 Linear SVM

RandomForest 0.96
AdaBoost 0.97

Logistic Regression 0.93

Wine 100 900/
1900

0.20/
0.25

900/
1900 Linear SVM

RandomForest 0.99
AdaBoost 0.99

Logistic Regression 0.99

CodRNA 100 900/
1900

0.10/
0.15

900/
1900 Linear SVM

RandomForest 0.97
AdaBoost 0.97

Logistic Regression 0.95

MNIST 100
1900/
2900 3 2900 LeNet

MODEL A 0.99
MODEL A DROPLESS 0.99

MODEL C 0.99
CNN 0.99
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Experimental results - AMEBA vs baseline
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Figure: AMEBA VS two steps attack strategy.
On the left, results for Spambase dataset, T = 1000.
On the right, results for the MNIST dataset, T = 1000.

Across all datasets, perturbations and budgets, improvements on the number of
successful evasion attacks range from 5% to 75%.
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Discussion

Why does AMEBA work?

• AMEBA effectively alternates the two actions.
• Organize Datk as queue is fundamental, since AMEBA dynamically refines the

surrogate model. Then the remaining~x ∈ Datk could be exploited effectively later.

Performance

• An attacker can carry out an adaptive black-box attack just in a matter of minutes.
• The average time spent to craft a successful evasion attack is less than 2 seconds.
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Conclusion

Defects of the traditional two-steps attack strategy

The traditional two steps-attack strategy in the black-box setting is sub-optimal.

AMEBA

• AMEBA outperforms the traditional strategy since it infers how to alternate the Train
and Attack actions.

• AMEBA effectively solves the delicate trade-off in the use of queries to maximize the
number of successful evasion attacks.

Future works

• Experiment different rewards for the Train action.
• Generalize the approach to the case where the output is a confidence score.
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