Explainable Global Fairness Verification of Tree-Based Classifiers

Stefano Calzavara, Lorenzo Cazzaro, Claudio Lucchese, Federico Marcuzzi

Accepted at the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML 2023)

Is Machine Learning Fair?

Example: Machine Learning (ML) used to predict recidivity in USA*

Non-recidivist black people were twice as likely to be labelled high risk than non-recidivist white people.

^{*}https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Fairness Guarantees

We need to describe the fair behaviour of a ML model by defining some properties.

SOTA of Fairness Verification

The **explainability** of the **guarantees** is **usually neglected...**

How can we prove the fairness of ML models?

Fairness Testing*1

Under-approximated analysis!

Formal Fairness Verification*2-3 Neural Network Tree-based classifier

Only for Neural Networks!

Supports only local properties!

^{*1}A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, *Black-box Fairness Testing of Machine Learning Models*, ESEC/SIGSOFT FSE 2019.

^{*2}H. Khedr and Y. Shoukry, Certifair: A Framework for Certified Global Fairness of Neural Networks, AAAI, 2023. *3F. Ranzato, C.Urban and M.Zanella, Fairness-Aware Training of Decision Trees by Abstract Interpretation, CIKM, 2021.

Research Problem

Problem:

The guarantee must be

explainable.

Contributions

Our analyzer (based on another analyzer*):

- Generates increasingly complex sufficient conditions (logical formulas) ensuring fairness.
- First iterations → formulas easy to understand (explainable).
- The more computational resources are available, the more complex conditions may be generated.
- We measure the precision and the performance of the analyzer and the explainability of the results of the analysis.

^{*}S. Calzavara, L. Cazzaro, C. Lucchese, F. Marcuzzi, S. Orlando, Beyond Robustness: Resilience Verification of Tree-Based Classifiers, Computers&Security (2022)

Example and Conclusion

Our analysis synthesizes a set of sufficient conditions for fairness:

Global conditions: predicate Conditions as **logical formulas** over the entire feature space {age > 70 and job = «prof», credit_account < 4000 and age < 35 and housing = «rent»}</pre>

Explainable formulas: readily understandable

Our analysis is precise, explainable, reasonably efficient and proved sound and **complete** (details in the full paper)!

Lorenzo Cazzaro Ph.D. student in Computer Science

Thank you! Questions?