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Security of Classifiers

Machine Learning (ML) classifiers are
vulnerable in adversarial
scenarios — performance downgrade.

We focus on evasion attacks: +.007

* (Imperceptible) Malicious
manipulations of

“panda” “nematode” “gibbon”
InStanceS at teSt tl me. 57.7% confidence 8.2% confidence 99.3 % confidence
® I l " I I I Credits: lan J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

O bJ eCt I Ve - m IS p red I Ctl O n - Harnessing Adversarial Examples. In ICLR. OpenReview.net

« Example: slight alteration of the
pixels of an image.
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Stability and Robustness

Consider:
* the classifierg : X - .
« A(x) : the set of all the adversarial manipulations of the instance x.

How to reason about the security of a classifier?

- Stability: the classifier g is stable on the instance x if and only if, for every
adversarial manipulation Zz € A(x), we have g(x) = g(2).

* Robustness: the classifier g is robust on the instance x if and only if X is
correctly classified by g and g is stable on x .



Shortcomings of Robustness

A key problem of robustness is its data-dependence.
Tiny difference between two test sets — quite different values of robustness!
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Contributions

1. Generalization of robustness beyond the test set: resilience.

2. How to verify resilience?

* Robustness verification method + data-independent stability analysis
(DISA)— DISA algorithm for decision trees and ensembles.

3. Experimental evaluation to motivate resilience and show the
effectiveness of the proposed DISA.

Full paper* available on Arxiv.
*https://arxiv.org/abs/2112.02705



Resillience
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Resilience

N(x) is the set of neighbours of X, instances that could have been sampled
in place of x — it helps to generallze robustness beyond the test-set.

Resilience: a classifier g is resilient on the instance x if and only if g is
robust on x and g is stable on all the instances z € N(x).
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Resilience Verification

Combine:
- Existing robustness verification methods.

- Data-independent stability analysis (DISA), that returns
X, ={x € X|gisstableon x}.

s g resilient on the instance x ?
1. Use DISA to obtain X, (not trivial!).

2. Is g robust on x (use existiting methods or X, )? If yes, go to step 3,
otherwise g is not resilient on the instance.

3. N(x) € X.?Ifyes, g is resilient on x , otherwise not.



Data-Independent
Stability Analysis
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Stability Analysis for Decision Trees/Forests

We designed a DISA algorithm for decision trees and forests. It's based
on three steps:

1. Annotate Leaf
2. Analyze Tree (proved sound)
3. Analyze Ensemble (proved sound)

We provide an example of the analysis. See the full paper for the
formalization of the three steps.
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DISA - Annotate Leaf — Symbolic attack

Each node of the decision tree is
annotated by a symbolic attack
(SA) — set of instances that can reach the
node along with their relevant adversarial
manipulations.
<(—OO, 10]7 (47 5]/> > <(_OO7 10]7 (57 6]}>1
Components: h g h Y \
+ Pre image: values before attack. pre image postimage st
* Post image: values after attack.

« Cost: budget paid by the attacker.

Pre and post image are hyperrectangles
(with as many intervals as the number
of features).
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DISA - Annotate Leaf - Example

<(_OO710]7(_OO7+OO) > <(_OO,1O]’(_OO7+OO)>O <(10,+OO),(—OO,+OO)> > <
<(10711]7(_OO7+OO)> > (991019(_005—1_00))1 ((9,10], (—OO,—|—OO)> > ((10,

[ L9 E D ] [ —
(10, +0c), (8, +0c) > (10, +00), (8, +00) o
(10, +00), (7, 8] > (10, +0c), (8, 9])4
{(9,10]. (8, 400) &> (10, 11], (8, +00));

((—o0, 10], (5, +00) = (—o0, 10], (5, +o)jo  {(10, 4+0c), (—oc, 8] = (10, +o0c), (—oc, 8]0
((—00, 10], (4, 5] & (—o0, 10], (5, 6]) (10, +00), (8,9] & (10, +00). (7.8]);
((10,11], (5. +00) B> (9,10, (5. +00))1 (9, 10], (00, 8] &> (10, 11], (—oc. 8]);

Scenario: budget b = 1, perturbation in [—1,1].

{(—00,10], (=00, 5] &= (—o0, 10], (—oc, 5]}o
((—00,10], (5, 6] > (—o0, 10], (4.5]);
((10,11], (—o0, 5] > (9, 10], (—00, 5]}
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DISA — Analyze Tree

Analyze Tree computes for each leaf the set of unstable SAs U —

SAs for which the attacker can force the decision tree to change its
prediction.

((—00,10], (5, 6] > (—oc, 10], (4,5])1 ((10, +00), (7,8] &> (10, +00), (8, 9}
((9,10], (5. 8] &> (10, 11], (4, 8]), ((10,11], (5, 8] > {f} u] (5, 9]},
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Experimental
Evaluation
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Setup

Datasets: Breast Cancer, Cod-RNA, Diabetes (also new experiments with
Sensorless).

ML models: standard and robust (TREANT™) decision trees and forests.

Attack scenario:
« Budget b = 1.
* The neighbourhood is N(¥) = {Z € X | |Z — ¥l < €}
« y specifies the perturbation of the adversarial attacks.

Metrics: we use the test-set to compute the accuracy a, robustness r, its
under-approximation 7 (using the result of the DISA), the under approximation

of the resilience R (using the result of the DISA).

* Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore Orlando. Treant: training evasion-aware decision trees. Data Min. Knowl. Discov.,
34(5):1390-1420, 2020.



Effectiveness of Resilience Verification - 1

Goals:

» Show that our estimate R is an accurate under-approximation of
the actual resilience R.

« Show that resilience significantly mitigates the shortcomings of
robustness.

Two experiments:

1. Use the similarity between r and + as a proxy of the precision of the
stability analysis.

2. Compute 1, the robustness on the “most unlucky” sampling in the
neighborhood of the original test set. If 7 is close R, then most instances
on which the classifier is not considered resilient by our analysis are
Indeed insecure.



Effectiveness of Resilience Verification - 2

Results:
* tis arather precise under-approximation of the actual

robustness r — R is a reasonably accurate estimate of R.
« The gap between r and R may be quite significant — R provides
a much more realistic security assessment than r.

Standard Models Robust Models

~

Dataset | ¢ | # Trees | Depth a r r T R a r T T R
5 3 0.708 | 0.662 | 0.643 | 0.656 | 0.636 | 0.727 | 0.714 | 0.701 | 0.675 | 0.662
diabetes | 0.01 7 3 0.714 | 0.649 | 0.630 | 0.636 | 0.623 | 0.727 | 0.714 | 0.708 | 0.675 | 0.662
9 3 0.747 | 0.656 | 0.630 | 0.623 | 0.617 |[ 0.753 | 0.740 | 0.727 | 0.695 | 0.688
D 3 0.775]0.686 | 0.672 | 0.639 | 0.621 || 0.752 | 0.715 | 0.707 | 0.698 | 0.691
cod-rna | 0.01 7 3 0.775] 0.686 | 0.666 | 0.640 | 0.612 || 0.750 | 0.714 | 0.713 | 0.698 | 0.697
9 3 0.769 | 0.677 | 0.663 | 0.625 | 0.605 || 0.750 | 0.714 | 0.713 | 0.698 | 0.697
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Conclusion
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Conclusion

1. Experimental results show that robustness may give a false
sense of security.

2. Resilience is useful in practice, since it gives a more conservative
account of the security of classifiers.

3. Our data-independent stability analysis is precise and feasible.

See the full paper for the formalization of the algorithms, the
soundess theorems and proofs and additional experiments about
scalability.
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