Resilience Verification of Tree-Based Classifiers

Stefano Calzavara, <u>Lorenzo Cazzaro</u>, Claudio Lucchese, Federico Marcuzzi, Salvatore Orlando

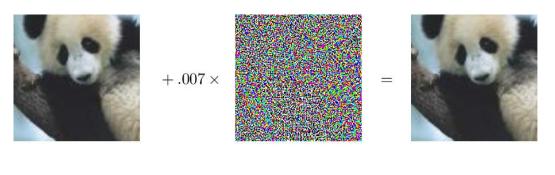
Ca' Foscari University, Venice, Italy

Security of Classifiers

Machine Learning (ML) classifiers are vulnerable in adversarial scenarios \rightarrow performance downgrade.

We focus on evasion attacks:

- (Imperceptible) Malicious manipulations of instances at test time.
- Objective: misprediction.
- Example: slight alteration of the pixels of an image.



"panda" 57.7% confidence "nematode" 8.2% confidence "gibbon" 99.3 % confidence

Credits: Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In ICLR. OpenReview.net

Stability and Robustness

Consider:

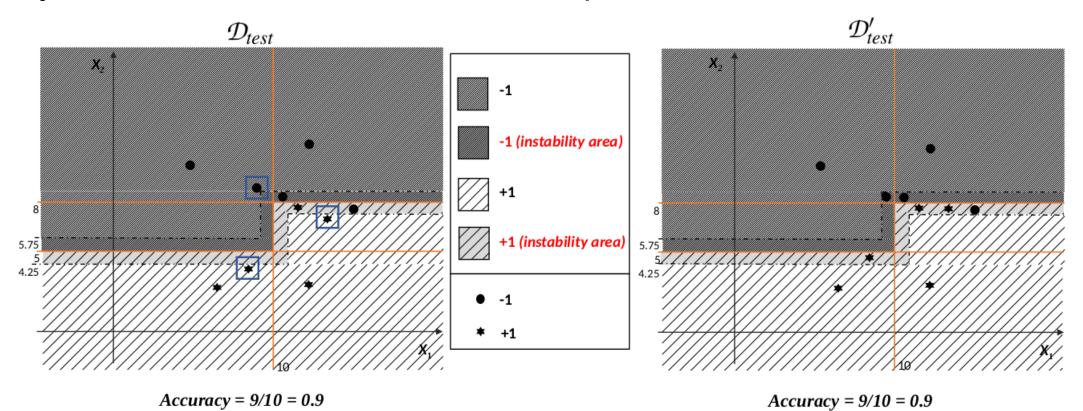
- the classifier $g: \mathcal{X} \to \mathcal{Y}$.
- $A(\vec{x})$: the set of all the adversarial manipulations of the instance \vec{x} .

How to reason about the security of a classifier?

- Stability: the classifier g is stable on the instance \vec{x} if and only if, for every adversarial manipulation $\vec{z} \in A(\vec{x})$, we have $g(\vec{x}) = g(\vec{z})$.
- **Robustness**: the classifier *g* is **robust** on the instance \vec{x} if and only if \vec{x} is correctly classified by *g* and *g* is stable on \vec{x} .

Shortcomings of Robustness

A key problem of robustness is its *data-dependence*. Tiny difference between two test sets \rightarrow quite different values of robustness!



Robustness = 7/10 = 0.7

Robustness = 4/10 = 0.4

Contributions

- 1. Generalization of robustness beyond the test set: **resilience**.
- 2. How to verify resilience?
 - Robustness verification method + data-independent stability analysis (DISA)→ DISA algorithm for decision trees and ensembles.
- 3. Experimental evaluation to motivate resilience and show the effectiveness of the proposed DISA.

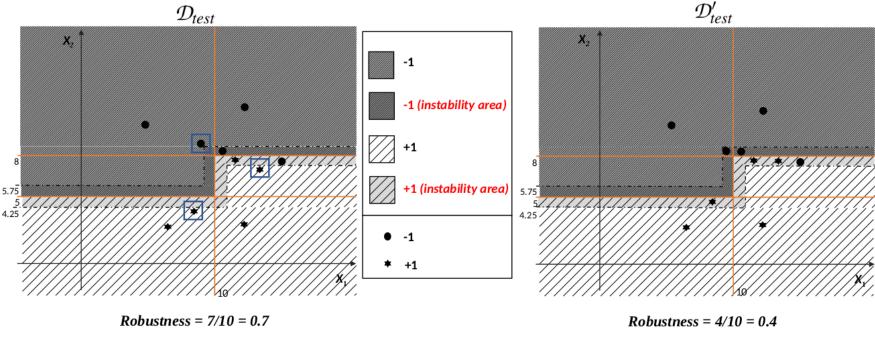
Full paper* available on Arxiv. *https://arxiv.org/abs/2112.02705

Resilience

Resilience

 $N(\vec{x})$ is the set of neighbours of \vec{x} , instances that could have been sampled in place of $\vec{x} \rightarrow$ it helps to generalize robustness beyond the test-set.

Resilience: a classifier *g* is **resilient** on the instance \vec{x} if and only if *g* is robust on \vec{x} and *g* is stable on all the instances $\vec{z} \in N(\vec{x})$.



Resilience = 4/10 = 0.4

Resilience = 4/10 = 0.4

Resilience Verification

Combine:

- Existing robustness verification methods.
- Data-independent stability analysis (DISA), that returns $X_s = \{\vec{x} \in \mathcal{X} \mid g \text{ is stable on } \vec{x}\}.$

Is g resilient on the instance \vec{x} ?

- 1. Use DISA to obtain X_s (not trivial!).
- 2. Is g robust on \vec{x} (use existiting methods or X_s)? If yes, go to step 3, otherwise g is not resilient on the instance.
- 3. $N(\vec{x}) \subseteq X_s$? If yes, g is resilient on \vec{x} , otherwise not.

Data-Independent Stability Analysis

Stability Analysis for Decision Trees/Forests

We designed a DISA algorithm for decision trees and forests. It's based on three steps:

- 1. Annotate Leaf
- 2. Analyze Tree (proved sound)
- 3. Analyze Ensemble (proved sound)

We provide an example of the analysis. See the full paper for the formalization of the three steps.

DISA - Annotate Leaf – Symbolic attack

Each node of the decision tree is annotated by a *symbolic attack* (SA) \rightarrow set of instances that can reach the node along with their *relevant* adversarial manipulations.

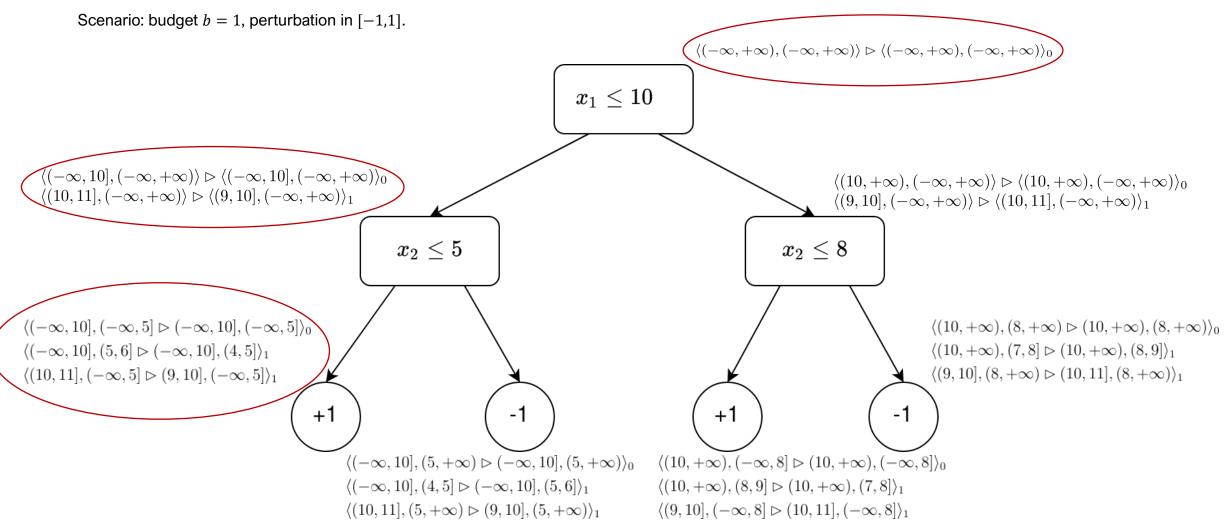
Components:

- Pre image: values before attack.
- Post image: values after attack.
- Cost: budget paid by the attacker.

Pre and post image are *hyperrectangles* (with as many intervals as the number of features).

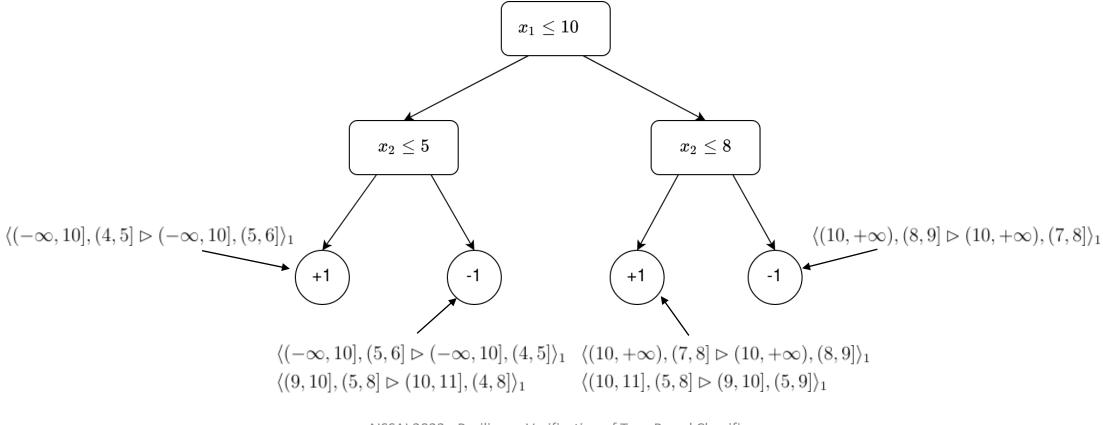
$$\langle \underbrace{(-\infty, 10], (4, 5]}_{\text{pre image}} \triangleright \langle \underbrace{(-\infty, 10], (5, 6]}_{\text{post image}} \rangle_{1}$$

DISA - Annotate Leaf - Example



DISA – Analyze Tree

Analyze Tree computes for each leaf the set of unstable SAs $U \rightarrow$ SAs for which the attacker can force the decision tree to change its prediction.



Experimental Evaluation

Setup

Datasets: Breast Cancer, Cod-RNA, Diabetes (also new experiments with Sensorless).

ML models: standard and robust (TREANT*) decision trees and forests.

Attack scenario:

- Budget b = 1.
- The neighbourhood is $N(\vec{x}) = \{\vec{z} \in \mathcal{X} \mid \|\vec{z} \vec{x}\|_{\infty} \le \varepsilon\}$
- γ specifies the perturbation of the adversarial attacks.

Metrics: we use the test-set to compute the accuracy a, robustness r, its under-approximation \hat{r} (using the result of the DISA), the under approximation of the resilience \hat{R} (using the result of the DISA).

^{*} Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore Orlando. Treant: training evasion-aware decision trees. Data Min. Knowl. Discov., 34(5):1390–1420, 2020.

Effectiveness of Resilience Verification - 1

Goals:

- Show that our estimate \hat{R} is an **accurate under-approximation** of the actual resilience R.
- Show that resilience significantly mitigates the shortcomings of robustness.

Two experiments:

- 1. Use the similarity between r and \hat{r} as a proxy of the precision of the stability analysis.
- 2. Compute \bar{r} , the robustness on the "most unlucky" sampling in the neighborhood of the original test set. If \bar{r} is close \hat{R} , then most instances on which the classifier is not considered resilient by our analysis are indeed insecure.

Effectiveness of Resilience Verification - 2

Results:

- \hat{r} is a rather precise under-approximation of the actual robustness $r \longrightarrow \hat{R}$ is a reasonably accurate estimate of R.
- The gap between r and \hat{R} may be quite significant $\rightarrow R$ provides a much more realistic security assessment than r.

				Standard Models				Robust Models					
Dataset	ε	# Trees	Depth	a	r	\hat{r}	\overline{r}	\hat{R}	a	r	\hat{r}	\overline{r}	\hat{R}
diabetes	0.01	$\overline{5}$	3	0.708	0.662	0.643	0.656	0.636	0.727	0.714	0.701	0.675	0.662
		7	3	0.714	0.649	0.630	0.636	0.623	0.727	0.714	0.708	0.675	0.662
		9	3	0.747	0.656	0.630	0.623	0.617	0.753	0.740	0.727	0.695	0.688
cod-rna	0.01	$\overline{5}$	3	0.775	0.686	0.672	0.639	0.621	0.752	0.715	0.707	0.698	0.691
		7	3	0.775	0.686	0.666	0.640	0.612	0.750	0.714	0.713	0.698	0.697
		9	3	0.769	0.677	0.663	0.625	0.605	0.750	0.714	0.713	0.698	0.697

Conclusion

Conclusion

- 1. Experimental results show that **robustness may give a false sense of security**.
- **2.** Resilience is useful in practice, since it gives a more conservative account of the security of classifiers.
- 3. Our data-independent stability analysis is precise and feasible.

See the full paper for the formalization of the algorithms, the soundess theorems and proofs and additional experiments about scalability.