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Machine Learning (ML) models are 

vulnerable to evasion attacks at test time!

Robustness is estimated as the accuracy under 

the 𝑝-norm-based attacker with maximum 

perturbation 𝑘.

Robustness verification is a well-studied

problem both for neural networks and other

models like tree ensembles.

2-norm-based attacker

𝑘
Ԧ𝑧
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Tree-Based Classifiers
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Ensemble prediction −> aggregation of the predictions

of the single trees.

We consider majority voting as aggregation scheme
(used by Random Forests).

Decision Tree Classifier 𝑡 Decision Tree Ensemble 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}

Ԧ𝑥 =< 10.5, 4.5, 17 >
𝑦 = +1

Ԧ𝑥 =< 10.5, 4.5, 17 >
𝑦 = +1



Complete robustness verification is hard for tree ensembles*!
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Robustness Verification is hard!
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Model Complexity

Decision tree Linear

Tree ensemble NP-complete

These analyses are worst case. Can we find a restricted class of tree ensembles 

enabling efficient security verification against any norm-based attackers?

*Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, and Cho-Jui Hsieh. 2020. On Lp-norm Robustness of Ensemble Decision Stumps and Trees. In ICML

Complexity of robustness verification for 𝑝-norm-based attackers.



Our contribution consists of 5 parts:

1. We identify what makes the verification problem NP-complete.

2. We restrict the shape of the model in order to avoid the source of the high 
complexity.

3. We design a (formally proven) efficient verification algorithm for the class of 
restricted models.

4. We design an (efficient) training algorithm for the class of restricted models.

5. We experimentally verify the effectiveness of our proposal.
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Contribution: Verifiable Learning
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We propose Verifiable Learning: rethink training algorithms in order to make 

the (robustness) verification of the trained model more efficient (also formally).

We instantiate Verifiable Learning for decision tree ensembles.
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Robustness verification of tree ensembles

ACM CCS 2023 – Verifiable Learning for Robust Tree Ensembles - Lorenzo Cazzaro

𝑡1 𝑡2 𝑡3

Problem: even though it is efficient to verify the robustness of a decision tree, it is not

possible to compose the results to make the verification efficient for ensembles.

Ԧ𝑥 =< 10.5, 4.5, 17 >
𝑦 = +1

1-norm-based attacker
𝑘 = 2

Ԧ𝑥 =< 10.5, 3.5, 17 >
𝑦 = +1
Ԧ𝑥 =< 10.5, 5.5, 17 >
𝑦 = +1

Step to the solution: if the structure of trees makes only compatible attacks feasibile, we
can compose the attacks on the single trees in an efficient way.
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Large-spread ensembles
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Large-spread condition: any two thresholds for the same feature occurring in two different 

trees are at a distance of at least 2𝑘, where 𝑘 is the maximum adversarial perturbation.

Intuition: if thresholds are sufficiently far away, attacks on different trees cannot interfere with 

each other and can be composed.

𝑡1 𝑡2 𝑡3Ԧ𝑥 =< 10.5, 3.5, 17 >
𝑦 = +1

1-norm-based attacker
𝑘 = 2

Ԧ𝑥 =< 10.5, 4.5, 17 >
𝑦 = +1



Our verifier CARVE* (suppose that the large-spread ensemble contains 𝑚 trees):

1. Analyze the 𝑚 individual trees of the ensemble, using the existing linear time 
algorithm.

2. If less than 
𝑚

2
+ 1 trees can be attacked, then no attack on the ensemble is possible 

(since the aggregation scheme is majority voting).

3. Otherwise, find the 
𝑚

2
+ 1 trees with the attacks of minimum perturbation: an attack 

on the ensemble is possible if and only if the sum of these attacks does not exceed 
the maximum adversarial perturbation 𝑘.
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Efficient robustness verification
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Theorem: robustness can be verified in polynomial time for large-spread 

tree ensembles for any norm-based attackers. 

*CARVE - CompositionAl Robustness Verifier for tree Ensembles



1. Train a traditional forest 𝑇 of ≫ 𝑚 trees and initialize the large-spread 
ensemble 𝐸 with a random tree from 𝑇.

2. Iterate for 𝑚− 1 rounds:
A. Pick the tree 𝑡 in 𝑇 that minimizes the overlaps with 𝐸.
B. Fix the overlaps of 𝑡 with 𝐸 by perturbing the thresholds of 𝑡 and E that

overlap (mutation).
C. Extend 𝐸 with 𝑡 (if all the overlaps have been fixed).

3. Return 𝐸 (𝑚 trees out of ≫ 𝑚 the trees in 𝑇 if LSE succeeds in building the 
entire large-spread ensemble → pruning).

9

Training large-spread ensembles with LSE
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The training algorithm LSE* is based on mutation and pruning:

*LSE - Large-Spread Ensemble



We implemented our verifier CARVE in C++ and our training 
algorithm LSE in Python (both publicly available on Github!).

Research questions:

1. Can we train a large-spread ensemble with the proposed 
algorithm?

2. What are the accuracy and the robustness of large-spread 
ensembles?

3. What is the benefit of the large-spread condition in terms of 
verification time and memory consumption over a state-of-the-
art complete verifier (SILVA*)?
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Experimental Evaluation

*Francesco Ranzato and Marco Zanella. 2020. Abstract Interpretation of Decision Tree Ensemble Classifiers. In AAAI.
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Performance of Large-Spread Ensembles
Verified using SILVA Verified using CARVE

We are using an ∞-norm-based-attacker

1. Large-Spread 

Ensembles are more 

robust.

2. SILVA may be forced to 

approximate the 

robustness.

Reasonable accuracy
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Efficiency of CARVE

CARVE requires less than one second per instance

VS

SILVA may not verify some instances even in 10 minutes!

CARVE requires less than 4GB RAM per instance

VS

SILVA may not verify some instances even with 100GB RAM!

MemoryTime



Take-Home Messages

1. Verifiable Learning: rethink traditional learning algorithms to make 
(robustness) verification of the trained model feasible.

2. The large-spread condition applied to tree-based classifiers enables
complete robustness verification in poly time (NP-hard problem in general).

3. Our pruning algorithm fixes the thresholds of a traditional decision tree
ensemble to enforce the large-spread condition (with a «reasonable» 
efficiency).

4. Large-spread ensembles sacrifice a limited amount of the predictive power 
but their robustness is normally higher and much more efficient to verify.
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Thank you! Questions?
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@LorenzoCazz

lorenzo.cazzaro@unive.it

Lorenzo Cazzaro
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https://lorenzocazzaro.github.io/
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LSE efficiency
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